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Preface

This book provides a textbook on classical mechanics and is in
particular suited for bachelor students in their first year of studies in
theoretical physics. The mathematical requirements include a
knowledge of differentiation and integration and mathematical proofs
are kept as simple as possible, however, still kept stringent. Elements of
linear algebra are explained in detail in the text if needed in the context
of coordinate transformations, rotations, Galilei or Lorentz
transformations.

After defining the physical quantities of interest in the kinematics of
mass points in inertial systems, the transformations between different
inertial systems are derived. After these preparatory chapters, the
Newtonian dynamics is formulated and examples for the solution of the
equations of motion are presented. Furthermore, the tight connection
between Galilei invariance and the conservation laws of momentum
and angular momentum are pointed out. In case of conservative forces
a potential energy can be formulated that—together with the kinetic
energy of mass points—gives the energy of the system. The
conservation of the total energy for a closed system follows in a straight
forward manner. Applications of Newtonian mechanics for 1/r?-forces
lead to Kepler’s laws for the motion of planets and a gravitational field
for a static mass distribution can be defined. Another important
application is the harmonic oscillator being damped or driven by an
external periodic force.

Since Maxwell’s equations for electrodynamics are not Galilei
invariant a new transformation law is derived (Lorentz
transformation), which keeps the velocity of light ¢ invariant in all
inertial systems moving with relative velocity v < c. Some
consequences are pointed out such as Lorentz contraction, time
dilation, simultaneity, or causality of events. Mathematical aspects of
Lorentz transformations are pointed out and the relativistic dynamics
for mass points are derived accordingly. It is, furthermore, shown that
the relativistic equations of motion merge with Newtonian dynamics
for small velocities v < c.



The formal structure of mechanics is addressed in the second part
of this book that aims at an algebraic formulation of the dynamics,
which is independent on the particular choice of coordinates of an
observer. After introducing generalized coordinates, that account for
constraints on the system of particles and avoid the introduction of
coercive forces, we introduce the Lagrange function and a variational
principle to derive the Lagrange equations of motion. A Legendre
transformation of the Lagrange function to the Hamilton function will
lead to a description of the dynamics in phase-space variables, i.e.
generalized coordinates and momenta. The Lagrange equations of
motion turn to Hamilton’s equations of motion, which can be expressed
by Poisson brackets for the time evolution of an observable. The latter
are shown to be invariant with respect to point transformations and
extended canonical transformations of the phase-space variables such
that a formal formulation of the classical mechanics is achieved that
paves the way for the formulation of quantum mechanics, continuum
mechanics, and statistical mechanics.

In the appendices the relativistic Lagrange and Hamilton functions
for characteristic problems are given as well as numerical algorithms
for differentiation and integration. Furthermore, algorithms of different
order for the solution of differential equations are presented.
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common teaching and research. It follows the drafts of my teacher Prof.
Dr. Achim Weiguny to whom this volume is dedicated. Special thanks go
to my daughter Marie for preparing some of the figures and helpful
comments on notations and presentations.

Wolfgang Cassing
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About This Book

This book provides a textbook on classical mechanics and is in
particular suited for bachelor students in their first year of studies in
theoretical physics. The mathematical requirements include a
knowledge of differentiation and integration; mathematical proofs are
kept as simple as possible, however, still kept stringent.

The Newtonian dynamics are developed for systems of point masses
and solved for a couple of characteristic examples. The extension to
relativistic dynamics is outlined and the Lorentz transformation is
derived in a simple case. Some consequences are pointed out such as
Lorentz contraction, time dilation, simultaneity or causality of events.

The formal structure of mechanics is addressed in the second part
of this book that aims at an algebraic formulation of the dynamics. The
Lagrange and Hamilton functions are introduced and a variational
principle is formulated, that leads to the Lagrange or Hamilton
equations of motion. The latter are rewritten in terms of Poisson
brackets in phase-space variables such that a formal formulation of the
classical mechanics is achieved that paves the way for quantum
mechanics, continuum mechanics and statistical mechanics.

The author is a retired Professor of Theoretical Physics at the
university of Giesen and has shared the responsibility for the
introduction of Bachelor and Master courses in Physics since 2005. His
expertise is the phase-space dynamics of classical and quantum many-
body systems, which in part is published in a book on transport
theories. Moreover, he has written a series of textbooks in Theoretical
Physics.
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1. Overview

Wolfgang Cassing!
(1) University of Giessen, Giefden, Hessen, Germany

1.1 Introduction

The description of phenomena in our daily world is a subtle problem
since everybody has his personal point of view and different observers
of the same phenomenon will provide different descriptions sometimes
guided by personal preferences. Even the description of stationary
objects depends on the position of the observer, the viewing angle and
the relative motion of the observer who might be sitting in a car or train
or be located in a rotating system. Furthermore, not all phenomena in
our daily life are subject of a physical description and physical ‘objects’
need to be properly defined. Another mandatory requirement is that
observations from observes in different systems must follow some
transformation rules such that they can clearly specify if their
observations are different or identical. A mathematical description is
required to clearly define ‘identical’ results.

In this book we will start with the most simple systems, i.e. the
motion of mass points in space and time and their trajectories under
the influence of forces. The mathematical tools will be differentiation
and integration in cartesian coordinate systems of a three-dimensional
real vector space, which will be used to uniquely define physical
quantities like inertial systems, velocity, acceleration, force, momentum,
angular momentum or energy. A brief introduction to Euclidean vector
spaces will be given and linear transformations (like rotations) be
described by suitable 3 x 3 matrices. This will allow for a rigid
formulation of kinematics in case of circular motion.


https://doi.org/10.1007/978-3-031-95512-9_1

Once the physical quantities are defined it remains to clarify the
conditions, that observers in different inertial systems—moving with

some constant Velocity% relative to each other—can find their
observations to be identical. This leads us to the Galilean relativity
principle and the Galilei group of transformations. Of special interest
are rotating and center of mass systems which will be discussed in
detail. After this preparatory work we will be able to define forces and
derive Newton’s equations of motion; their solution will provide the
trajectory of a mass point in space and time. Examples for characteristic
problems will be given and the explicit solutions derived in detail. It
will turn out that instead of velocities or angular velocities it is more
convenient to introduce momenta and angular momenta of particles
since for closed systems—without external forces—the total
momentum is a constant of motion. This also holds for the angular
momentum if no external torque acts on the system. Next we will
consider the connection between the work done by a force on a particle
along its trajectory and the actual kinetic energy. In case of conservative

forces we can introduce a potential energy U (ﬁ that allows to compute
the actual force by its negative gradient. Then the energy of the system
can be defined by the sum of kinetic and potential energy and—for
closed systems—is found to be a conserved quantity, too.

We will continue with applications of Newtonian mechanics for
central forces, where the potential U only depends on the magnitude of

the relative distance |7°_; —7;| between two mass points. In this case the
conservation of momentum, angular momentum and energy holds
which drastically reduces the number of free degrees of freedom. An
important case are 1/r*-forces, which holds for Coulomb and
gravitational forces; we will classify the trajectories according to their
energy and derive Kepler’s laws for the motion of planets. In extension
the law of gravity is derived and gravity fields are introduced for static
mass distributions. In addition the dynamics of a linear oscillator is
discussed—another important physical system—and the solutions are
computed from the equations of motion also in case of additional
frictional forces. The case of a damped oscillator, that is driven by an
external periodic force, will lead to the formation of resonances that are
analysed in some detail. In addition the problem of coupled harmonic



oscillations is addressed that is characteristic for the vibrational modes
in crystals.

So far we have introduced classical Newton mechanics which,
however, has different transformation properties than Maxwell’s
equations for electrodynamics. This incompatibility has been solved in
Einstein’s special theory of relativity. We thus have to replace the Galilei
transformation between inertial systems by the Lorentz transformation
that keeps the velocity of light ¢ invariant in all inertial systems. We will
derive the Lorentz transformation explicitly (in a simple case) and
discuss its implications: Lorentz contraction, time dilation, simultaneity
in moving systems as well as causality and the limiting velocity of
signals. Some mathematical aspects of the Lorentz group of
transformations will be discussed and Lorentz scalars, four-vectors and
Lorentz tensors are identified as well as corresponding physical
quantities like four-current densities. We close the discussion of
relativistic dynamics by introducing the energy-momentum four-vector,
which is conserved in all four components for closed systems, and
discuss scattering problems. As an example the important problem of
Compton scattering of a photon on a charge g is computed explicitly.
The derivation of the Lorentz transformation of the force finalizes this
chapter.

The equations of motion can be written in different ways—
depending on the choice of coordinates—and in principle all
independent choices have equal rights. However, some choices facilitate
the solutions of the equations of motion and others might cause severe
problems. It is thus of general interest to find ‘optimal’ coordinates for
the description, which is also of practical help if the system is subject to
constraints, that require the introduction of coercive forces which often
are difficult to define. It is thus meaningful to define generalized
coordinates that fulfill the constraints and also reduce the complexity of
the problem by reducing the number of (linear independent) degrees of
freedom. The equations of motion in generalized coordinates are
derived from Newton’s equations of motion. It is found that these
equations can also be generated by a variational principle, which
specifies a Lagrange function L, that is given by the difference between
the kinetic and potential energy in case of conservative forces. An
important consequence is that the Lagrange equations of motion can



also be applied to other areas of physics. Generalized momenta are
defined by the derivative of the Lagrange function with respect to the
generalized velocity. Accordingly, if the Lagrange function does not
depend on a specific coordinate, e.g. the azimuthal angle ¢, the
corresponding generalized momentum (here angular momentum) is a
constant of motion. This suggests to transform the formulation to
phase-space variables given by coordinates and their associated
momenta, which is carried out by a Legendre transformation defining
the Hamilton function H. In case of conservative forces the latter just
gives the energy of the system in phase-space variables. The variational
principle thus can be reformulated in terms of Hamilton’s (equivalent)
variational principle which gives the canonical equations of motion.
The latter are illustrated for a couple of examples. Furthermore, it is
shown that for a closed system the translational invariance leads to the
conservation of the total momentum, the rotational invariance to the
conservation of total angular momentum, and the invariance with
respect to time translations to the conservation of the total energy.
Applications of the Lagrange formalism will be given for the motion
of rigid bodies, which leads to the definition of an inertial tensor. The
eigenvectors and eigenvalues of this tensor define the main axes of
inertia and main moments of inertia, respectively. From the Lagrange
function for the rigid body we will derive Euler’s equation of motion,
which are studied for the case of a symmetric heavy gyroscope.
Although the Lagrange formalism is a convenient method to tackle
complex problems it is of advantage to formulate the dynamics in
phase-space variables, i.e. in generalized coordinates and generalized
momenta. In this case the time evolution of an observable, that not
explicitly depends on time, is given by Poisson brackets which are
determined by the derivative of the observable and the Hamiltonian
with respect to the phase-space variables. The elementary Poisson
bracket between generalized coordinates and generalized momenta
turns out to be unity for associated pairs and their time evolution is
given by the Poisson bracket with the Hamilton function, i.e. by the
canonical equations of motion. The Poisson brackets thus allow for an
algebraic formulation of the dynamics. However, the choice of
generalized coordinates is not unique and invertible transformations
between the coordinates are allowed. But not all transformations are



meaningful since some transformations may lead to equations of
motion that are no longer canonical. Allowed transformations then will
be given by point transformations and extended canonical
transformations that keep the equations of motion canonical invariant.
Furthermore, the elementary Poisson brackets will be shown to be
invariant with respect to canonical transformations such that a
formulation of classical mechanics is achieved that is independent on
the choice of the generalized coordinates. This will pave the way to
quantum mechanics, where the Poisson brackets will be replaced by
commutators of operators in an abstract Hilbert space. This also leads
to a rigid formulation of statistical mechanics, where the physical
system—in equilibrium—is described by ensembles with properties
that are defined by expectation values of conserved observables.

In the appendices some useful extensions are presented: the
Lagrange and Hamilton functions for relativistic systems as well as for
continuum mechanics. We close by providing numerical algorithms for
differentiation and integration as well as for the numerical solution of a
set of differential equations.

1.2 Newton’s Axioms
1

The starting points for classical non-relativistic mechanics+ are
Newton's axioms for the motion of a mass point (of mass m) under the

influence of a force F By a mass point we understand a rigid body that
possesses no internal degrees of freedom and can only perform
translations (displacements) and rotations (turns).

The Newtonian axioms are explicitly stated as follows:

e 1staxiom

In an inertial system a free particle moves colinear and
uniform.

e 2nd axiom

The state of motion of a particle of mass m changes under the

%
influence of a force F' according to




2 —> —
m%r:F.

(1.1)

e 3rd axiom

For the interaction between 2 mass points the principle of action
and reaction applies, i.e.

oy s
Fig=—-Fyn , (1.2)

_>
when F, is the force exerted by particle 1 on particle 2.

e 4th axiom

o >
If two forces F, and F} act on a mass point, then the resulting
- = =
force F' = F, + Fyhas to be inserted into the equation of motion

(superposition principle of forces).

The terms free particle, inertial system, and force require
mathematical precision. A physical observation will always be
meaningful when the statements made are independent of the observer,
i.e. measurements in different reference systems can be compared and
confirmed as identical. Mathematical tools—for the comparability of
measurements—are provided in mechanics by the vector calculus and
the theory of differential equations. Initially, however; it is expedient to
introduce a series of simple concepts (also corresponding to natural
intuition).

Footnotes

1 By non-relativistic we refer to all physical systems that move with velocities v < ¢, where
c ~ 300,000 km/s denotes the velocity of light.
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2. Kinematics

Wolfgang Cassing!
(1) University of Giessen, Gief3en, Hessen, Germany

In this chapter we will describe the motion of mass points in space and time and their trajectories by

vectors?(t),?(t) andE)(t). The mathematical tools are differentiation in cartesian or polar coordinate
systems of a three-dimensional real vector space, which is used to uniquely define physical quantities
like inertial systems, velocity, acceleration, angular velocity or angular acceleration. A brief introduction
to Euclidean vector spaces will been given and linear transformations (like rotations) be described by
suitable 3 x 3 matrices. This allows for a rigid formulation of kinematics also in case of circular motion.

2.1 Basic Terms

2.1.1 Straight-Line Motion
To describe the straight-line motion we select a cartesian coordinate system such that the mass point e.g.
is moving (in a single dimension) along the x-axis (see Fig. 2.1).

The sequence of motions is determined by the position x of the mass point at time t (z = z(t)). The
trajectory x(t) in this case is completely determined.

We define the average velocity by

v = 220 _ Ax (2.1)

where Az is the displacement during the time interval At.

If x(t) is differentiable with respect to t we define the velocity v(t) by

v(t) =limas0 % = %. (2.2)

If the velocity v remains constant during the entire motion, i.e. v is independent of ¢, we call the
motion uniform.

The average acceleration, furthermore, is defined by

ap(t) = 2040 _ Av, (2.3)

If x(t) is at least twice differentiable with respect to t the acceleration then is given by

. 2
a(t) =limp, o {2 = & = L2, (2.4)

If a # 0 is independent of time t we call the motion uniformly accelerated.
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A A
[ 1 i > X
X(t) X(t)

Fig. 2.1 Illustration for straight-line motion in a single dimension (along the x-axis)

2.1.2 Curved Motion

We describe the position of a particle on its trajectory (in 3 spatial dimensions) by its coordinates x, y, z
in a cartesian coordinate system. We define a coordinate vector

= ( z\ , (2.5)
\:)

_>
which points from the coordinate origin to the position P of the particle. The sequence of motions is
then determined by the functions

z=2z(t), y=1y(t), z=2() (2.6)
or in vector notation

Az
= W)y A ( 2; \
Um =" A — | a | (2.8)

At
\4)
At

: ) o . —
It is represented by a vector in the direction of the displacement vector Ar.

If the functions z(¢), y(t), z(t) are differentiable with respect to time ¢, the velocity is defined
by:

Vg

- . A _ dr

V= | Uy :llmAt_m At T dte [2.9)
(%

L o . =
The velocity v is represented by a vector in direction of the tangent to the trajectory at point P.

The length of the position vector 7'is given by:

F=r= V@t @12 (2.10)

the magnitude of the velocity by:

== y/v2 +v2 +v2 (2.11)

If the functions v, (t), vy(t), v(t) are all differentiable with respect to ¢, the acceleration
becomes



=1 A & _ &7
d=lima 3 = § = & (212)

Note: More than 2nd derivatives of the trajectory r(¢) with respect to time ¢t are not needed because
in Newton’s equations of motion at most 2nd derivatives appear.

2.1.3 Curvature of Trajectories

The velocity v is a vector in the direction of the tangent to the trajectory. We can therefore also write

— —> — Wt
ut) = v(t)er(t);  er(t) = ‘%& , (2.13)
with?T as unit vector in the direction of the respective tangent to the trajectory.
The acceleration?(according to the product rule of differentiation) then reads:
—_ d = dv > de;
a= E(v(t)eT(t)) = Srer + vk 2.14)
— = .

1. 2.

The acceleration thus can be separated in two components:

1.
the tangential component (~ ?T(t)):
— —
ar = ey (2.15)
2.

and the normal component which is perpendicular to?T and given by:

—
Ay = v, (2.16)

. — .
A useful component representation of et is:

cos p(t)
er(t) = (sin :(t)), (2.17)
0

which gives

. —¢sin ¢ (cos (go—l—%)\l
Ao — | geosp | =¢|sin(p+ %) | =gen. (2.18)
0 0 }
With the abbreviation dy/dt = ¢ we get
d=dr+dy (2.19)

with



ay = vjey. (2.20)

The magnitude of ¢ is closely related to the curvature of the trajectory. The arc length s = s(t) depends
on the magnitude of the velocity via

ds = . (2.21)
Using the chain rule we obtain
. d de d d

The quantity introduced in this way can be calculated as dy/ds and interpreted geometrically: The
intersection of the path normals of neighboring points A, A’ in the limit At — 0 is called center of
curvature.

For the corresponding curvature radius o = o(t) we get:

. A di
% :llmAtﬁo A_f == d_f (223)
—dy = Zey. (2.24)

Special cases:

1.
colinear motion:

@ — 00, i.e. ay — 0(2.25)

2.
circular motion:

0 = Reircle = const.  (2.26)

After these rather clear definitions it is now important to clarify for which conditions 2 observers in

different systems X and ¥’ measure the same trajectories r(t), r"'(¢) or denote them as identical. To
this aim we first briefly recall basic elements of vector analysis.

2.2 Vectors
2.2.1 Definition

We define a vector?in R31 by a triple of real numbers a1, as, as (components)and write
(o)
d={as|. (2.27)
\03}

S
We call two vectors a, b equal if and only if:
(2.28)



ay; — bl a9 = b2 as — b3.

2.2.2 Real Vector Spaces
In real vector spaces an addition (+) of vectors is defined as well as a multiplication of vectors with
real numbers.

>
The addition of 2 vectors a, b:
e (2.29)

is defined by

a1 +bi=c1 as + by = co as + b3 = C3. (2.30)

The addition introduced in this way assigns exactly a single vector to every two vectors and has the
following properties:

1.
commutativity
- =
dirb=b+td (2.31)
2.
associativity
— —
@+b)+c=a+(b+c) (2:32)
3. N
neutral element There is a vector 0 with the property
%
d+0=d (2.33)
for any vectorz i.e. the vector with the components (0, 0, 0).
4.
inverse element For every Vectorﬁwith components ai, as, ag there is exactly one vector (—7)
such that
%
-+ (—d) =0, (2:34)
i.e. the vector with the components (—a1, —as, —as).

Elements (here: vectors) with a connection (here: addition rule) with the properties 1 to 4 form a
commutative group.
Furthermore, we define the

multiplication of vectors with real numbers « by:
(2.35)

_>
aa = | aas




The multiplication has the following properties:

1.
associativity

(aB)d = a(fd)  (236)

2.
distributivity

(a+ B)d = ad+ fd (2.37)

— —
a(d+b) = ad + ab

for arbitrary real numbers q, S.

3.
neutral element:

ld=d (2.38)

A commutative group, where elements are multiplied by real numbers and have the properties 1-3,

defines a real vector space. The position vectors 7'and displacement vectors Ar'form such a real vector
space (in 3 dimensions R3).

2.2.3 Euclidean Vector Spaces

In Euclidean vector spaces the length of vectors can be defined as well as an angle between 2 vectors.
In 3-dimensional position space, the length (or norm) of a position vector is given by

r:m: 1/;p2+y2+2220 (239)

and the angle ¢ between arbitrary 2 position vectors is determined by

\71 —7;!2 = r% + rg — 2r17r3 COS (. (2.40)

These properties characterize an Euclidean space.
Mathematically, one gets an Euclidean vector space from a real vector space in the following way: One

— —
defines—between two vectors,?and b—a scalar product (or dot product)?- b with the following
roperties:

(commutative)

— —
3 (oz) b= a@- b) (associative)




4. — —
e (b —1—3 =4 +7~?(distributive)

By
b
cos p = &2 2.41
— —
we can introduce an angle ¢, which turns out to be the intermediate angle of @ and b.
Using the scalar product we can also define the orthogonality of vectors:
S
2 vectors a, b are called orthogonal to each other if:
_>
a-b=0. (2.42)
Geometrically the two vectors then are perpendicular to each other.
2.2.4 Basis and Dimension of Vector Spaces
In order to define a basis of a vector space we need the concept of linear independence:
vectors?l, 72, ey EZ are called linearly independent, if in the vector addition
%
a171 + OLQEE +...+ aﬁ)i =0 (2.43)
for all real coefficients ay (k = 1, . ., %) always follows
a;=ay=---=qa; =0; (2.44)
otherwise the vectors are denoted to be linearly dependent.
The unit vectors
1 0
— — —
1= 10 2= 11 e3= |0 (2.45)
0 1
are linearly independent, because from
1 0 0 0
a1 0 + a2 1]+ asg 0 =10 (2.46)
0 0 1 0

. . —
necessarily follows a; = a2 = a3 = 0. Using the vectors (2.45) any vector a can be represented by a
linear combination of the basis vectors:




ar 1 0 0 (2.47)
as| =a1|0| +az|1] +as3|0
as 0 0 1

In short:

T T S ;5 —
a=aie; + asex +azez3 =Y . ; ae;. (2.48)

The basis of a vector space is a set of linearly independent vectors covering the entire vector space
such that every vector of the considered vector space uniquely can be written as a linear combination of
the basis vectors. The number of basis vectors for a given vector space is fixed and defines the
dimension of the vector space. The vectors (2.45) form a basis of the vector space of dimension 3.

Of particular practical importance (in physics) are vectors e;, which form an orthonormal basis.

They have the property
e e = by (2.49)
with the abbreviation:
S 1fori =k c
* =Y 0fori # k. (2:50)

3 orthonormal vectors thus form a basis of a 3-dimensional vector space.
Note: When using an orthonormal basis, the dot product gets a particularly simple explicit form. Let

%
a;, b; (1 = 1,2, 3) be the components (also called “coordinates”) of 2 Vectorsﬂt b with respect to an
orthonormal basisa (k=1,2,3)

T=3"° apey (2.51)
%
b=Y2 bie; (2.52)

the scalar product becomes:

7‘?: (Xia akac) (X b;;) =Yk X akbi@c 2) =Y Y awbidki = 27 aibi. (2:53)

Furthermore, the dot (or scalar) product of?anda gives the components a,, of @ with respect toa:
7-?2 = Z?:1 ai(a a) = Z?:1 a;0;, = ay. (2.54)

To illustrate these results, let us consider a position vector r, given by its coordinates x, y, z in a cartesian
coordinate system:

)



Here e, ey, €, are unit vectors in direction of the mutually orthogonal axes (cartesian basis),

1 0
e=[o] < =[1] <=0l (2.56)
0 1
—> .
Then the length squared of 7'is given by
2
PR — a2 (257)
and the length by
F=r— T F g T 2. (2:58)
The dot product

e = (2.59)

T

gives the length of the vector in x-direction by orthogonal projection. The same holds for the y- and z-
direction when taking the scalar product with the respective basis vector e, or €.

2.3 Orthogonal Transformations
2.3.1 Vectors in Mathematics and Physics

While in mathematics vectors are simply elements of an (arbitrary) vector space, in physics a vector
space is always understood as elements of Euclidean vector spaces!

When exposing two position vectors to a rotation in space or a reflection at the origin, the length and
intermediate angle do not change!

2.3.2 Rotations

We now study the change of the components of a position vector 7 when the coordinate system rotates
around the z-axis by an angle ¢. We find:

= x cosp+ysinp

y =—xzsinp+ycosyp (2.60)
Z =z
With the notation
T=T1,y==x22, 2=x3; 2 =z, ¥y =z, 2 =x3’ (2.61)
we can write in compact form
v =37 dyz; 1i=1,2,3, (2.62)

where the rotation matrix (d;;) has the form:
(2.63)
( cosp sing 0
—sing cosep 01.
0 0 1

(dij) = \



Remark:

e For an arbitrary rotation the connection between the coordinates x; and z;’ is linear again, but the
matrix (d;;) has a more complicated form.

General properties of the matrix for a rotation:
Since during rotations the length of vectors and the angle between each of two vectors cannot
change, the dot product must be invariant under rotations.

For 2 Vectorsﬁl , ?2 with the components

Ty , *9; inthesystem XY Z

wllj ) :v'2j in the system X'Y'Z’ (2.64)

must hold:

— =
T = Y eile’ = X0 (Z?nzl dim$1m> (Zizl din$2n) =3 TinTon = T1 - T2.(2.65)

It follows that

Z?=1 dzmdzn = Z?:l dﬁzdm = 5mn (266)

for the invariance of the scalar product during the transformation. Linear transformations with the
property (2.66) are called orthogonal transformations.

2.3.3 Reflection at the Origin (Inversion)
We now consider the discrete transformation

T, — IIIZ'/ = —x;. (2.67]

The corresponding transformation matrix (z; = >k Sikxr) has the form

-1 0 0
(se) = | 0 =1 0 ]. (2.68)
0 0 -1

The difference between the orthogonal transformations presented here is that during rotations a
right-handed system remains right-handed, while in an inversion it goes over to a left-handed system.
This is expressed mathematically by the determinant of the transformation. The difference is that for
rotations always holds:

det (dix) =1, (2.69)
while in the case of reflection we have
det (six) = —1. (2.70)

Remark: The reflection on a plane, e.g.



!/ / !/
Ty =1T1;%y==2T2; T3=—T3, (2.71)

can be done by combining the reflection at the origin and a rotation around the z-axis.

Appendum: Elementary determinants
We recall that the determinant of a square matrix a;; for 2 X 2 matrices is defined as:

ain a2
det (aix) = = aijaz — aa12, (2.72)
azr a22

and for 3 x 3 matrices by:

aip a2 ais
det (a;) = |ao1 a2 as|=

az1 a2 ass

A R R
The following rules are useful for practical calculations:
e Rule 1:
det (A) =det (a;) = det (ar;) =det (A7) (2.74)
¢ Rule 2:

If we swap in the matrix 2 rows (columns) the determinant changes sign.

Conclusion:

If 2 rows (columns) in a matrix are the same (or differ by a constant factor), then the
determinant is zero.

¢ Rule 3:

If we add a multiple of another row (column) to a row (column) the determinant does not
change.

Note: The determinant of a matrix A (or linear transformation) is important for the existence of the
inverse matrix A~!. The latter only exists if det A # 0,i.e.det (A 1A)=det A det A~! = 1.

2.3.4 Vectors and Scalars
We can now (in non-relativistic physics) define vectors as (ordered) triples of real numbers, for which

1.
an addition and multiplication is defined in line with Sect. 2.2.2.

2.
and which behave like position vectors?? during rotations.




Note: The velocity?and acceleration?are vectors. The vectors (position vectors, velocity,
acceleration), which change the sign by reflection, are called polar vectors. This also holds for momenta
and forces (see following chapters).

The vectors, which do not change the sign by reflection, are called axial vectors. Examples for axial
vectors are: angular momentum, torque (see following chapters).

2.3.5 Benefits of the Vector Calculation
Simplification of notation: Instead of specifying the components x(t), y(t), z(t), one writes shorter:
r(t).

Independence of the coordinate system: Statements in the form of vector equations hold
regardless of the choice of the coordinate system.

2.4 Circular Motion

2.4.1 Angular Velocity

We consider the motion of a mass point on a circle with radius r. A useful parameter representation of
the trajectory is given by:

(cos @(t)\
— .
r(t) = r| sin ¢(t) (2.75)
\ o)
with » = const and the center of the circle as the origin.
The velocity
. (— sin go(t)\
— . —
V=% =r1¢| cosp(t) | =roer (2.76)
\ o)
has the magnitude
v=|v| =1 (2.77)
and is always directed perpendicular to r, since
7= r2¢(— cos ¢ sin ¢+ sin ¢ cos @) = 0. (2.78)
The magnitude of the angular velocity w is introduced via
w=p=-. (2.79)

If the position vector 7 of any mass point of the rotating body is not in the orbital plane of the mass point
(see Fig. 2.2), (2.79) has to be replaced by:

V= roP = r¢ sin y = rw sin 7. (2.80)

We can characterize any rigid rotation by the vector angular velocityj, whose magnitude is determined
by equation (2.80) and its direction is parallel to the axis of rotation in the sense of a right-hand screw



Fig. 2.3.

Fig. 2.2 Tllustration for circular motion if the origin of the coordinate system is not in the plane of motion

D

A

Fig. 2.3 Direction of the angular velocityg(right-handed)

The general connection of r, v andjis described by the

2.4.2 Vector Product

—77. . —
The vector product of 2 vectors a, b is defined as a vector ¢, written as

%
T=dxb (2.81)

its length

c :ET: ab sin v (2.82)

- B
with v defined by the angle between a and b and whose direction is perpendicular to @ and b, i.e.

%
4-c¢=0 b-c=0 (2.83)

. — = . —
in such a way that q, b, c'give a right-handed system. The components of the vector c'then are (as a

, —
function of the components of a and b) given by:

ayb, —a.by
ab, —azb, |. (2.84)
azby — ayb,

%
CcC =




Properties of the vector product :

. Anticommutativity:
Ixb=-bxd (285
2. N —
If a is parallel to b, then
Ixb=0 (286)

3.
Associative law: (o € R)

(ad x?: a(?x?) (2.87)

4.
Distributive law:

_)

— —
bz) :E)x by -f-E)X b2(2-88)

%
7)( (b1 +

. . =7 - 7
Geometric interpretation of |a X b|: The area of the parallelogram formed by a and b (see Fig. 2.4)
is given by:

%
A:]E)x b|= ab sin for0<y<m (2.89)

(9]
Il
QU
X
S

_>
Fig. 2.4 llustration of the parallelogram formed by vectors @ and b

Calculation rules:

— o
For any vectors a, b, c'the following identity holds:

Ax(bxd) =@ - (@ b (2.90)

— —
The mixed product (E) x b) -?gives the volume of the parallelepiped spanned byﬂé b, andc,

2.4.3 Angular Acceleration

The acceleration is calculated from the time derivative of the velocity v:




E)_ & d g, — — = =

& = o (rwer) = er?N + wrer =ay +ar (2.91)
with d/dt ?T = w?N, where?]v points to the center of the circle. For
T=wxT (2.92)
follows:
H
q= T X (2.93)
The component
N
dp = % (2.94)
is the tangential component of a, to which the normal component of a,
7N:§>><7:§>><(E>xr , (2.95)
is orthogonal.
Special case: uniform circular motion (w = const) : With w = 0 and r = —re}y follows
d=dy=wx (jx?j = @} W — (ﬁﬁ)?: rwey : centripetal acceleration (2.96)

Example: Motion of a mass point fixed on the earth’s surface Fig. 2.5.

equator

Fig. 2.5 Position of a mass point fixed on the earth’s surface
The following applies to the velocity of the mass point:

v = wR sin (90° — A) = wR cos ()

)

(2.97)




where R is the Earth’s radius, w the magnitude of the angular velocity and A the geographical width. The
accelerationE):?N with magnitude

WN\: wv = w?R cos \ (2.98)

points to the center of the circular path of the considered mass point; it is perpendicular to the north-

south axis of the earth and to the Velocity?,> which is directed tangential to the circular path.
Finally, we define the angular acceleration by:

(2.99)

which is the change in angular velocity over time.
In summarizing this chapter, we have described the motion of mass points in space and time and

their trajectories by Vectors7(t),7(t) and?(t). The mathematical tools are differentiation in cartesian or
polar coordinate systems of a three-dimensional real vector space, which is used to uniquely define
physical quantities like inertial systems, velocity, acceleration, angular velocity or angular acceleration. A
brief introduction to Euclidean vector spaces has been given and linear transformations (like rotations)
been described by suitable 3 x 3 matrices. This allows for a rigid formulation of kinematics also in case of
circular motion.

Footnotes

1 R3 is the three dimensional real vector space.
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3. Relative Motion

Wolfgang Cassing!
(1) University of Giessen, Giefden, Hessen, Germany

Once the physical quantities of interest are defined it remains to clarify the conditions,

that observers in different inertial systems—moving with some constant Velocity%
relative to each other—can find their observations to be identical. This leads us to the
Galilean relativity principle and the Galilei group of transformations. Of special
interest are rotating and center of mass systems, which will be discussed in detail.

3.1 Inertial Systems

3.1.1 Idea and Practice

According to Newton'’s first axiom (Sect. 1.2) an inertial system is defined by a
uniform motion of a free particle. The practical use of Newton’s axioms therefore
depends on the question, if there are (at least approximately) inertial systems.

In the following we want to start from the idealized assumption that a strict
inertial system was found. In this system the 2nd Newton axiom applies in the form

%
ma = F, (3.1)

where the mass m is viewed as a positive constant. Adding the principle of Actio =
Reactio (3rd axiom),

— —
Fiy = —Fy, (3.2)

we can consider

%
ma = F (3.3)

as the definition of force and from the combination of the two equations obtain a
rule for the measurement of mass.
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3.1.2 Galilean Principle of Relativity

In addition to an inertial system X we consider another reference system X'/, which
: L= : e e
moves with constant velocity vy relative to 3. A mass point P, whose position in the

system X is given by the position vector r, is described by the position vector 7’ in X':

T = T— Tt (3.4)

Taking time derivatives we get for the velocities

7/ :7_70 (3.5)
and for the accelerations
4 = d (3.6)

If P moves freely in the system X, then P also moves freely with respect to X', An
observer in ¥’ comes to the same result for the force as in ¥,

— —
F' = m'd’ = md = F. (3.7)

This identity finds its expression in the Galilean principle of relativity

The basic laws of mechanics are the same in all reference systems moving
relative to each other with a constant velocity.

With the assumption that time measurements are the same in all inertial frames,
t=t' (3.8)

we define a Galilean transformation by:

T =T — et t' =t (3.9)

Galilei’s addition law for velocities then gives:




ridi i (3.10)

Limits of Galilei’s principle of relativity:

1.
The basic equations of electrodynamics are not invariant with respect to the
e R
transformation v’ = v — vy.
2.

For high velocities (v < ¢; c: velocity of light) Newton’s equation of motion is no
longer applicable.

3.1.3 Galilei Group
v

The Galilean transformations form a commutative group G(vy), where the
connection between group elements is the successive execution of transformations.

1.
Commutativity: The combination of two Galilei transformations gives a Galilei-

transformation and is commutative.

Associativity: The associativity of the Galilean transformations follows from the
associativity of the addition of velocities.

Neutral element: There is a neutral element,
_>
Vo =0 (3.11)

describing the identical transformation.

Inverse element: For every Galilean transformation G, characterized by the
relative velocity vy of the systems under consideration, there is an inverse Galilei-

. _ . . . — .
transformation G, which corresponds to the relative velocity —vy, i.e.

G1(vh) = G(~p).

3.2 Rotating Reference Systems
3.2.1 Non-inertial Systems
In inertial systems the equation of motion applies in the simple form:

%
ma = F. (3.12)

However, from time to time it may be useful to switch to a non-inertial system in
which the trajectory has a simpler form. To do this we have to know how velocity and



acceleration change in the transformation from the inertial system to the non-inertial
system.

3.2.2 Uniformly Rotating Systems

We consider the motion of a mass point in an inertial system ¥ and in a system
rotating uniformly relative to 3, i.e. ¥.’. Both systems should initially have the same

origin. The position vector 7= r” of the mass point is (at the initial time):

e e — > = =

r'=ze, +ye, +ze, =z'ey +yey+zey =1 (3.13)
Here e; and ey are unit orthogonal vectors in the direction of the cartesian axes of X or
P

The velocity v for the observer in Y. at fixed coordinate system e; is:

— — —
— d_ = Uz, + Vy€y + v,e, (314)

and for the observer in Y.’ with fixed coordinate systema £

— g — — —
1 CZ; — v;/em/ + 'U;,ey/ + 'U'Z,ez/. (3.15)

For the observer in X the axes of Y/ rotate; the vectorsa/ change in time, such that
(in the system E)ﬁcan also be calculated as

! d ! ]
= vw,z;/ + 2 d:;t + ,ey +v ;t + vz,ezx + 2 d;t . (3.16)
Then
B=1 G xT (3.17)

and w is the angular velocity with which ¥/ rotates relative to X.
The acceleration for an observer in ). is given by:

= @ T S
a = % = agey + ayey + a.e;, (3.18)




and for an observer in X’ by:

=, — — —
r_ 122 — a;,em, + a;,ey/ + a'z,ez/, (3.19)

For the observer in Y. the vectors e; are time dependent; accordingly

TR d_> TR
7: i(vl?,+x/&+vl?/+y/ﬁ+vl€>/+z/dez/):
dt > " dt vy dt #E dt
TR — PR 7 —r TR
—> ’ dew/ / dey/ / dezf — = — ,dex/ ,dey/ ,dezf
a +vx/7+vylﬁ+vzlﬁ+(wxv)+wx(w di +y dt + z dt):
T+ 2@ x V) +wx (@x T, (3.20)

— = .- : — o
The term 2(w x v") is the Coriolis acceleration and the term w X (w X ") the
centrifugal acceleration.

e
The equation of motion in the rotating system ¥’ results from F = ma in X:

%
mﬁ’:F—2mw><7’)—ma>>< @x?’). (3.21)

_>
Thus in X'/, in addition to Newton’s force F', so-called inertial forces show up:

the Coriolis force

—2m(w x V") (3.22)
and the centrifugal force
—mw % (@ xT). (3.23)

In contrast to the forces determined by Newton’s 2nd axiom the inertial forces do
not contribute to the Newtonian forces for the interaction between mass points.

3.2.3 Explanations and Examples



A mass point is located at the end of a stretched thread on a circular path moving with
s
constant angular velocity w.

1.
From the perspective of an observer in the inertial system 3. a force acts on the
particle via the stretched thread,

F = md = md x (@ x7), (3.24)

which accelerates the particle towards the center of the circle.
2

For an observer in the (co-)rotating system Y’ the particle is not accelerated;
&' = 0. This can be interpreted as follows: in ¥’ the centrifugal force and the

%
Newtonian force F', originating from the stretched thread, balance each other.

3.2.4 Generalization

In case that the origin of ¥’ is not the same as that of &, i.e.7= E—l—?’, we get
T=R+7 + @7 (3.25)
and
=B rd 2@ <) 1D x @ 7)), (3.26)

= —
if X' is accelerated relative to X (by R) or is moving with relative velocity R(t).

3.3 Center of Mass System
3.3.1 Definition of the Center of Mass

= LV mir, . M= SN, m; (totalmass) , (3.27)

where m; are the particle masses and r; their positions in a space-fixed coordinate
system .. We obtain for the velocity of the center of mass of N particles:




=7 iVi

— N —
Us = 97 i1 (3.28)

and for the acceleration:

— —
ag = ﬁ Zf\;l m;a;. (3.29)

[f the system is an inertial system, then according to Newton’s 2nd axiom:

_>
mid; = F;, i=1,2,...,N. (3.30)

The equation of motion for the center of mass then is given by Newton’s 4th axiom:

— — o
Md, = F,withF, =N F, (3.31)

%
If no external forces F’; act, we get

%
F, = 0 (332)

(according to Newton’s 3rd axiom), since the internal forces between the particles
cancel in pairs, i.e.

Md, = 0; (3.33)

the center of mass moves uniformly on a straight line.

3.3.2 Observables in the Center of Mass System

For many problems it is useful to move from the laboratory system to the center of
mass system. We consider a closed system which is defined by vanishing external
forces. We now move to the center of mass system X/ by the condition that the center
of mass is at rest:

vs! =0. (3.34)

If one specifically chooses the center of mass as the origin of the system X/, we have



=0 (3.35)

The positions of the particles then are:

7;’ :72 —z;accordingly > mz?z’ = 0. (3.36)

The velocities in X/ are:

= — v, (337)
and the accelerations:

O = —a,. (3.38)
Thus:

SN mv ' = 0. (3.39)

3.3.3 Determination of the Center of Mass

In case of a continuous mass distribution p(z, y, z) the center of mass vector is given
by:

— —
Ty = 27 fJf ' p(z,y, 2) dzdydz, (3.40)

with the total mass:

M= f‘[f p(z,y,2) dzdydz, (3.41)

i.e. the summation over mass points m; at positions 7; is replaced by an integration

over space with the mass distribution p(?ﬁ

3.3.4 Collision of Two Particles
In the system X (inertial system) we have:

— — —
m171 =Fp mzzg =Fy=—-Fn , (3-42)



if no external forces are at work. In the center of mass system we then get (see
Fig. 3.1):

mivy | = —mavs’ (3.43)

both before (left) and after the collision (right).

m, m, = 1
e —r —— — — <«—=0 e e s e s s e
> 5 =g =g =
V. / ,
vl 4 2 - m,
before collision after collision

Fig. 3.1 Velocity vectors and positions before (left) and after the collision (right)

3.3.5 Reduced Mass

The advantage of the center of mass system is that the number of degrees of freedom
is reduced. After separating the center of mass motion only 3 degrees of freedom
remain for the 2-particle problem! By introducing the relative vector

- =y = — =
r:rls—’r'zs:’r'l—’l”z (3'44)

the equation of motion for the relative motion reads:

I S matm
pr'=p(rs —ry) = p(2 — B = p(o + ) Fio = p™2 Fyy = Fy, (345)

with the reduced mass

mi1ms

po= ume (3.46)

Since the problem of the center of mass motion has already been solved (in the
absence of external forces), we have reduced the two-body problem (6 degrees of
freedom) to an effective one-body problem (3 degrees of freedom).

Two simple limiting cases are:

1. m; = mao = m. Then we get

m (3.47)

2|

M:

for example in proton-proton scattering.



2.
m1 > mo. In this case we obtain:

ma2

M=o me (3.48)

mi

Thus the mass of the lighter particle is approximately giving the reduced mass, e.g.
for the motion of an electron around a nucleus or of the earth around the sun.

In summarizing this chapter we have specified inertial systems and introduced the
Galilean principle of relativity to compare observations in different inertial systems,

which move relative to each other with a constant velocity vy. Of special interest have
been rotating systems and center of mass systems, where the latter is of particular
importance for the description of binary collisions.
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4. Dynamics

Wolfgang Cassingt
(1) University of Giessen, Gief3en, Hessen, Germany

After the preparatory work in the previous chapters we here will define forces and
derive Newton’s equations of motion; their solution will provide the trajectory of a
mass point in space and time. Examples for characteristic problems will be given
and the explicit solutions derived in detail. It will turn out that instead of velocities
or angular velocities it is more convenient to introduce momenta and angular
momenta of particles since for closed systems—without external forces—the total
momentum is a constant of motion. This also holds for the angular momentum if
no external torque acts on the system. Next we will consider the connection
between the work done by a force on a particle along its trajectory and the actual
kinetic energy. In case of conservative forces we can introduce a potential energy

U(?} that allows to compute the actual force by its negative gradient. Then the
energy of the system can be defined by the sum of kinetic and potential energy and
—for closed systems—is found to be a conserved quantity, too.

4.1 Consequences from Newton’s Axioms
The explicit formulation of Newton’s axioms has been given in Sect. 1.2.

4.1.1 Mass

The combination of the 2nd and 3rd axioms (in Sect. 1.2) for the collision of 2
particles with masses m; and my leads to:

— —
%(mlvl) = F12 (4-1)
— — —
%(m2’02) = F21 = —Flg. (4-2)

[t follows:
(4.3)


https://doi.org/10.1007/978-3-031-95512-9_4

—
4 (p1 +ps) =0

for the momenta of the particles (2 = 1, 2) defined by

— —
Pi = M;v;. (4-4)

The sum of the momenta in the collision is thus constant in time:

-, — — — —, —
p1’ —p1 = Ap1 = —Apy = —(p2 — p2) (4.5)
or
my _ AW
. T 9 4,

if the mass is independent of the body’s state of motion.

We can use Eq. (4.6) as an operational definition of mass: We can do this by
measuring velocities and thus determine the ratio of two masses, i.e. if one mass is
specified, but chosen uniquely as unit mass m, the mass m, relative to m is
fixed. The question of whether the mass possibly might be velocity-dependent can
be determined by scattering experiments: One finds that in non-relativistic
mechanics (v < ¢) the mass can be assumed to be independent of the velocity.

4.1.2 Force

Since we have introduced the mass as a scalar, the force is (in line with the 2nd
axiom)—Ilike the acceleration—a vector:

%
F = mﬁ. (4.7)

The superposition principle (4th axiom) does not follow from the vector character
of the force

e
F =F, + F,, (4.8)

because the vector property of the force would also be satisfied if for the resulting
force we have
(4.9)



- = 5 oo =
F=F —f—Fz—f—f(Fl,Fz).

_>
The vector function f is introduced here to account for a possible mutual influence

— —
of the forces F'; and F. The superposition principle is therefore an independent
axiom, which not automatically follows from the vector character of the force!

4.1.3 Equations of Motion
The equations of motion for a system of N mass points are:

N —
iA; =

m F;, i=1,2,3,...,N (4.10)

%
where Fj is the total force acting on particle i. It is composed additively by

1.
internal forces,

from the interaction with the (N — 1) particles, for which the 3rd axiom
applies,
2.
external forces,

describing the influence of the environment.

Mathematically speaking, the equations of motion are generally a coupled

system of 2nd order differential equations for the trajectories?z(t) that have to be
calculated. One obtains unique solutions if the initial conditions

7i(t) =7 ° (4.11)
Vi(tg) =0; (4.12)

are known at some time (. These are 2 - 3 - N = 6N boundary conditions.
Example: Motion of a particle in a single dimension:
From the equation of motion

mi = F(t) (4.13)

we obtain by integration in time
. (4.14)
i(t) == [, F(t') dt' + c1

m Jig



and by further integration
z(t) = [, &(t')dt' + ca. (4.15)

The two integration constants c; and cz are determined as soon as the initial
conditions at ¢ty are known:

Zi?(t()) =C .’E(to) = C3. (4.16)

4.2 Examples for Solving Equations of Motion

4.2.1 Charged Particle in a Homogeneous Electric Field
The force on a point charge g in an electrostatic field is given by

- =
F = qE, (4.17)

_>
where E is the electric field strength, which we take as spatial and assume to be
- =
constantin time, i.e. £ = E(r).

The equation of motion then reads:
ma = qF. (4.18)
Let’s choose the coordinate system such that
E l 8 \
= . 419
\2/ (419

In this case the equations of motion simplify to:

i=0 =0 :2=-1FE, . (4.20)
By time integration we get (tp = 0)
=000 §=uv,00) =44 0,(0) (4.21)

for the velocities. Repeated integration gives
. (4.22)
z = z0 + v (0)t y = yo + vy(0)t z =20 +v.(0)t + 2 5t%



In vector notation:

) =7 < T2 (4.23)

Important special cases:

1. N —
v(0) parallel E. We obtain

x,y = const. z = 79 + v,(0)t + 5-E,t7. (4.24)
There is a rectilinear accelerated motion as in case of the free fall.

. —
v(0) perpendicular to E.

With a suitable choice of coordinates we get for?(O) = vy(O)EZ

zt)=0  yt) =v, (00t  2(t) = L= (4.25)
a parabola results for the trajectory:

2(t) = gy Y2(2)- (4.26)

y

4.2.2 Charged Particle in a Constant Homogeneous Magnetic Field

%
The force on a particle with charge q and Velocityﬁin a magnetic field B is given
by:

— —
F = %(E)x B) (c: velocity of light) . (4.27)

Let’s choose the coordinate system such that
[ 0]

B= -\l;)/-, (4.28)

which leads to:
(4.29)

oo lUsz\
v

XB=v —v.B, p.
\"2



The equation of motion then reads:

q

am — %UyBZ aly — _—U$BZ az — 0-

Obviouslyﬁis perpendicular toﬁ,

vd=0,
such that
d.2__ d o
=7V —5(7-35—2'0 a=>0
or

v? = const.

In z-direction the motion is trivial:

v, = const, thus : z(t) = z¢ + v,(0)t.

(4.30)

(4.31)

(4.32)

(4.33)

(4.34)

The equations of motion are coupled in the x, y direction. To find the solution, we

first use the complex auxiliary variable
Q(t) = =(t) + iy(?).

Differentiation with respect to t yields

Q=2+ 1y =0, +1iv,
and
Q=2%+1ij=a,+1ia,
For the variable a; + ta, we then obtain
. o qu .
a, +ia, = == (v, — iv,)
or
s 4B,
Q=—-i—>Q.

With the Ansatz,

(4.35)

(4.36)

(4.37)

(4.38)

(4.39)



Q = Qoe™, (4.40)
we get by insertion:

A2 = —jw\  with w= %= (4.41)

mc ’
thus
A=0o0r\ = —iw. (4.42)
The general solution then reads:
Q = Qo1 + Qoae ™", (4.43)

The 2 complex constants ¢; and Qo2 are determined by the 4 real initial
conditions for x(0), y(0), (0) and §(0):

z(0) +iy(0) = Q(0) = Qo1 + Qo2 (4.44)
£(0) + 19(0) = —iwQo2. (4.45)

Writing Qo2 as
Qo2 = 0e" = (p cos a + ip sin ), (4.46)

i.e. in polar coordinates, we get:
£(0)° + §(0)* = v® = w?e?. (4.47)
Thus
0=v,/w, (4.48)

where v is the magnitude of the velocity perpendicular to the z-direction. For the
phase a one finds:

_ _ 20
tan a = — OR (4.49)
Dividing Q(¢t) (4.43) again into real and imaginary parts, we obtain:
T =y + o cos (o — wt), (4.50)

(4.51)



y=1yo+ osin (a — wt)

with zqg = 2(0) — p cos e and yy = y(0) — p sin . The trajectory then describes
a circle

(z = 20)" + (y = v0)" = & (452)
with radius g and center (zg, yo).

4.2.3 Free Fall on the Rotating Earth

Approximate inertial system:

We choose a system X’ whose origin is at the center of the earth and whose
axis directions are firmly defined relative to the fixed stars. In 3/ then
(approximately) holds:

_>
ma' = F, (4.53)

%
where F'is the gravitational force between the mass point of mass m and the

earth.

We now move to a system X that rotates rigidly with the earth, whose origin is
located on the earth’s surface. Then—according to Sect. 3.2.4—(exchanging Y and
¥') we get:

@ =R+ d+ 2@ x0) + @ x (@ x T, (4.54)

%
where R is the vector from the center of the earth ¥’ to the origin of the system X
rotating with the earth. ¥ moves in a circular path with (constant) angular velocity

ﬁof the earth’s rotation. Therefore:
- —
R=wx (E)x R), (4.55)
such that
7:?()\) — 2(c_u>><?5 — W x (jx r), (4.56)

where

T =E Ix@xR) (457)



is the ‘effective’ gravitational acceleration in 3.
We now make the approximation that the height of the fall is small compared

%
to the distance R of the systems ¥ and ¥, i.e. m<<]R\. Then we can neglect
— = : — :
w X (w X 7) relative to w X (w X R). The axes of the system X we define as
follows: the z-axis is antiparallel to the effective gravitational acceleration g(\),
the x-axis in the north-south direction, and the y-axis in the west-east direction.
Then we obtain:

j: —w sin '720 + w cos 7?2, (4.58)

where 7 is the angle between e, and e,. The equations of motion read:

& = 2yw cos 7y (4.59)
i = —2z2w sin v — 2Zw cos 7y (4.60)
zZ=—g(\) + 2gw sin ~. (4.61)

As initial conditions we choose:

z(0)=0  #(0)=0 (4.62)
yW0)=0  §(0)=0 (463)
2(0) = 2z 2(0) = 0. (4.64)

Since the Coriolis force is a small correction to gravity we can write the solution as
a Taylor series with respect to w:

=1 +wry+ - (4.65)
Yy=y1+wys+--- (4.66)
2=z +wzy+--- (4.67)

This approximation is inserted into the equations of motion (4.59), (4.60), (4.61)
and one has to take care that they must be identical in w. One gets:




21=0 §1=0 2 =—g(N), (4.68)

and
&9 = 2y, cos 7y (4.69)
g = —221 sin vy — 221 cos 7y (4.70)
22 = 2y1 sin Y (471)

for the terms linear in w. This leads to:

z1=0 y1 =0 21 = 20 — %g()\)t2 (4.72)
and
F9 =0 (4.73)
Yo = 2gt sin vy (4.74)
29 = 0. (4.75)

A special solution is:
zo =0 Yo = %gt?’ sin y z9 = 0. (4.76)
The complete solution then is:
z =0 y = “gt® sin vy z =2y — +gt? (4.77)
3 0 5 gl . .

Thus one gets an east deviation from the normal fall law.
Estimate: For v = 45° and zp = 100m the deviation is y ~ 1.5 cm; the effect is
maximum at the equator.

4.3 Momentum and Angular Momentum

4.3.1 Momentum
The momentum of a particle of mass m is defined as

(4.78)



if v is its velocity. Since m is a scalar and v is a vector, pis also a vector. The
Newtonian equation of motion then reads:

o =
% —F. (4.79)

In words: the force is identical to the temporal change in momentum. If
there is no force acting on a particle, the momentum of the particle is constant in
time:

- =
% =0 — ?: const. (4.80)

For a system of N particles with masses m; the momentum of the i-th particle is
given by:

— —
pi = m;v; (4.81)
It’s equation of motion is:
o
(Z = F;, (4.82)

%
where Fj is the total force acting on the i-th particle.

The total momentum of the N particles

%
P=xN 7 = M, (4.83)

is a conserved quantity for a closed system (constant of motion).

The following holds:

dF _ N 7 (4.84)
_:Zilei:Fa’ :




_>
where F, is the sum of all "external forces",

— —
F, = Zf\i  Fi.. (4.85)

%
The internal forces cancel each other in pairs because for each term Fj; also
— —

F; = —F;;in ZZ F; occurs. For a closed system the following holds:
— —
F,, =0,thus F, =0, (4.86)
= —
% =0 — P = const. (4.87)

Thus the 3rd Newton axiom is crucial for the conservation of momentum in a
closed system.

4.3.2 Momentum Law and Galilean Invariance
We assume that the momentum law holds in an inertial system .,:

— ’ —
Zﬁil miv; = Zf\il miv'; , (4.88)

— . : —~ :
where m;, v; are the masses and velocities at some time ¢, m}, v/; at another time
t'. By the distinction between m; and m;, as well as between N and N’ we allow for
mass exchange between the particles.

According to the principle of relativity the momentum law must also hold in
every other inertialsystem 3J,,:

!

— —
SN ma; = N miad; (4.89)

This gives the law of mass conservation:

N N’




Proof If?;ﬁ (0,0, 0) is the velocity of the systems X%, and 3, relative to each
other, then:

- =
ZZ zﬂ; —i—?; v = u; + . (4.91)
This leads to (4.88):
SN / — N '
Sy math; + U my = Y miuly + VY, mi, (4.92)

and—due to momentum conservation - to:

- ,
0 =d(SNymi = LNy m). (4.93)

According to Galilei’s principle of relativity the momentum law and mass-
conservation law are connected to each other. (Note: This relationship does not
hold in relativistic mechanics.)

4.3.3 Example: Rocket in Gravity-Free Space

We are looking for the velocity of the rocket as a function of the time changing

mass according to the emission of mass Am with velocity v¢. The momentum law

holds because in gravity-free space there is no external force acting on the rocket.
We can then formulate the problem as follows: At time t the rocket has the

mass m = m(t) and the velocity v = v(t) relative to the earth, which we want to

consider as an inertial system. In the time At the rocket mass changes by Am < 0

; then the rocket at time ¢ + A, has the mass (m + Am) at a changed velocity

(v + A v). The (positive) repelled amount of gas (—A m) has the velocity

(—vg +v + A v) relative to earth. According to the momentum law:

mv = (m + Am)(v+ Av) + (—=Am)(—vg + v+ Av) (4.94)
or
0 = mAv + Amug . (4.95)
The change of the velocity during the time At is:
2 = _ygLom (4.96)

or in the limit At — 0:

dv 1 dm (4'97)

@ = VG T



Integration in time gives:
v=vy+vgln (%), (4.98)
if the rocket has mass m and velocity vy at time £.

4.3.4 Angular Momentum
Y . : — L= :
The angular momentum [ of a particle with momentum p‘at position r'is defined

by

%
=755 (4.99)
_ —
With dp/dt = F we get
o e
4 Wy F, (4.100)

I : g .
since ' X p'= 0, i.e. the temporal change of [ is determined by the torque

%
T F. (4.101)

. — .
If there is no torque, n = 0, the angular momentum is constant:

_>

%
% =0 — [ = const. (4.102)

This is fulfilled for
1. —»
F' = 0 trivially and for

2.
central forces

(4.103)



%
F = k(r)r,

such as the important cases of gravitational force or Coulomb force (
k(r) ~ 1/7r%).

For N particles we define the total angular momentum as follows:

7 7 —
L=3% L= Zfil(m X P;)- (4.104)

The temporal change of the total angular momentum is:

_>
_ N @ xF) =N W =N (4.105)

e e
The angular momentum L therefore is constant in time if the total torque N

vanishes.

dt

4.3.5 Conservation of Angular Momentum and Galilean Invariance

We assume that the angular momentum of the system under consideration (in
some inertial system 3.,) is conserved. For the transition from 3, to another
inertial system 3., we have:

e T T e
Ti =T —Vt;V; — U =V; — U, (4.106)

if;}is the relative velocity between 3, and %,,. This leads to:

val(ﬁ Xﬁ) Sl (_> ??t) X (EZ — m?ﬁ (4.107)
or
- =
L—L+Mvux(r—uvit), (4.108)

where M is the total mass,?s andﬁs position and velocity of the center of mass.
If no external force acts, the motion of the center of mass is a straight line, such
that
(4.109)



- =
rs — Vst = const.

_>
= The angular momentum L changes during the transition >, — X, only by an
additive constant.

4.3.6 Examples

Uniform circular motion

P
The angular momentum [ = r

and has the magnitude

—, . : :
X pis perpendicular to the plane of circular motion

I = mwr?. (4.110)
[t is constant because for uniform circular motion w and r are constant.

Area law
For a mass point under the influence of a central force the conservation of angular
momentum implies

1. that the motion takes place in a plane F spanned by?and;,> and

2. that the surface velocity is constant,

%
4F _ const. (4.111)

Proof We consider the plane F spanned by the 2 neighboring position vectors?>
and 7+ A?)(Fig. 4.1):

=
!

Fig. 4.1 Plane F spanned by the 2 neighboring position vectors?and?—b— AT

. (4.112)
AF = L('x [F'+ A7) = 1 (' x A7)



The surface velocity then is:

— —
% = %Wx;ﬁ = ﬁ — const (4113)
(see Kepler’s laws below).
4.3.7 External and Internal Angular Momentum
We introduce as coordinates:
 the centroid coordinate
— —
ry =LV mir, ; M=Y1,m; (4.114)
and
e the coordinates of the particles in the center of mass system
7; s :7; _75 ) (4.115)
%
Then L can be rewritten as:
7 rs e ST 4116
L =Y ,(r;®4+7r5) x (mv; * +muv,) = (4.116)
—s > —~ =\ _ 7 7
Z(ri ° X Di 5) + (7"3 X Ps) = Lint + L,
i
using

_>
The first term in (4.116) Ljyt is called internal angular momentum,; it is related
to the center of mass system and independent of its motion in space, i.e.

_>
independent of the observer. The second term L is called external angular



momentum,; it corresponds to the angular momentum of a particle of mass M and

via rs depends on the origin of the coordinate system, i.e. depends on the observer.

%
The change of L in time is:

dL dL, dL 4.118
@ = a T @ (4.118)
where
L, _ = dp _ (4.119)
G —Ts X 5 =7rs X Fy. .
_>
If no external force is acting, F, = 0, then
_>
L, = const. , (4.120)

— —
and the change of L arises only from the change in L;;.
To examine this change in more detail let's separate the torque as follows

— — — — —
N =Y, X [Fia + X, Fijl) = Su(rs % Fia) + X ,(ri —15) x Fyj.(4.121)

%

— —
Here Fj, is the external force acting on particle i, and it is used that F;; = —F};

according to the actio=reactio principle. The further discussion will be carried out

%
for the case that the internal forces are central forces, i.e. F;; is parallel

- = = . .
r;; = r; — ;. Then the 2nd term vanishes and we obtain:

- — —
N =Y,(Fi x Fia) = N, ; (4.122)

i.e. the torque only arises from the external forces. For a closed system we have

— —
F,=0:N,=0 (4.123)

such that

(4.124)
— — —

L = const , L; = const, also L;,; = const.



4.3.8 Exchange of Momentum and Angular Momentum
in the Collision of Two (or Several) Particles

We consider the collision between two particles that interact by a central force; in
this case there are no external forces. Angular momentum and momentum
conservation give:

- = o o
Iy

L+lb=04L"+ (4.125)

before the collision  after the collision

S
p1+pr=p1 +p2..

For the change in momentum and angular momentum of particles 1 and 2
follows:
AE = —AE; : momentum exchange (4.126)
and
Aﬁ = —AT; : angular momentum exchange (4.127)
4.4 Energy

In addition to momentum and angular momentum, the energy provides essential
information about a physical system. For many important cases energy is also a
conserved quantity.

4.4.1 Kinetic Energy and Work

A mass point of mass m is moving on a trajectory r(¢) under the influence of a

— —
force F' from point a to b. The work done by the force F' on the mass point along
the trajectory from a to b (W) is defined by the line integral

_>
Wap = [, F - dr, (4.128)



where the line integral is carried out along the particle trajectory?(t). Due to the
scalar product the work is only determined by the component of the force in the
direction of the path. The work W, then is a scalar quantity.

The connection between the work W, and the kinetic energy of the mass
point follows from:

- =
m¥ —F . (4.129)

By forming the scalar product with vand integrating in time we obtain:
firm (4 )t = [ (?7) dt . (4.130)
The right side of this relationship is precisely the work:
i (?7) dt = [ Frv dt = [ Fr ds = ['F.dr, (4.131)

if the mass point is at point a(b) at time ¢,). Fr denotes the component of the

_>
force F' tangential to the trajectory and s is the arc length of the path. We can
integrate the left hand side:

to(dd T\ g — th d [ _
tf<d—§f . v)dt =m [ 4L (%)dt = m (2 — v?) (4.132)
with
v =0(t,)? v = o(ty)? . (4.133)
Defining the Kinetic energy T of a particle of mass m and of velocity?by:
2
T=5mv? = £, (4.134)
we find:
Ty, —T, =Wy . (4.135)

In words:



_>
The work done by the force F'along the trajectory?(t) from a to b is equal
to the change in kinetic energy.

Example: Free fall
A body of mass m drops under the influence of constant gravity from the height z,

where itis atrestattime¢ = 0 (v_>(0) = 0). The work done by gravity then is:
0
W0 = — [, mgdz = +mgz ; (4.136)

it is equal to the kinetic energy that is reached before impact with the earth’s
surface:

Ty = %vg = mgzy , (4.137)

since T'(0) = 0 due to the initial condition.
Extension to a system of N particles:

The kinetic energy of a system of N particles is defined by

N N
T=3iTi =Yy 3mvy . (4.138)

From the equations of motion

- =
m; 0 — F, (4.139)

we derive (as above):

% .
Ty—T.=> ft'fj’ F, o dt =Y, [P Fpds; =Y, Wi, =W, (4.140)

where a and b represent the position of the particles?? at the times t, and t;.

%
Fr; is the component of the force F); tangential to the path of the i-th particle; s;
the associated arc length.

4.4.2 Conservative Forces, Potential Energy, Energy Theorem

For the sake of simplicity we limit ourselves to a single mass point below. The
definition of work generally depends not only on the integration boundaries a, b,



but also on the shape of the trajectory (Fig. 4.2):

r[;b??dt £ T[(”F?dt

* O0__[] - ‘000 (4.141)
path1 path 2
Path 1

Path 2
d

Fig. 4.2 Illustration of two different trajectories connecting the points a and b

Particular forces have proven to be important in physics, where W is
independent of the trajectory between a and b. We refer to such forces as
conservative forces. In the mathematical sense we call a force conservative, if a

scalar function U(?5 exists such that:
_>
Wap = [ F-ds=U(a) — U(b) . (4.142)

The function U(?j is called potential energy of the particle at position?lt is only
determined up to an additive constant.

Conclusions:

Work along a closed path

For a conservative force the integration over any closed path gives:

%
§F.ds=§Frds=0. (4.143)

Energy theorem

For a conservative force we get:
Ty +Ub)=T,+ Ul(a) . (4.144)
The total energy of the particle

E=T+U (4.145)




| therefore is constant.

Example: mass point under the influence of gravity

%
[P F W dt = — [Pmg dz = mgz, — mgz, = U(a) — U(D). (4.146)

Since U is only fixed up to an additive constant we can fix U by the condition that at
the earth’s surface U(0) = 0. Then the potential energy U(h) = mgh of the

particle at the height h above the earth’s surface is equal to the work done (against
gravity) to raise the mass point from the earth’s surface to the height h without
changing its kinetic energy. If the mass point drops from a height h free we get

E = %va + mgz = const. = mgh (4.147)

for every point on the trajectory, if the mass point was at rest at z = h. The
increase in Kinetic energy is equal to the decrease in potential energy.

_>
Calculation of the force F' from the potential energy U(?}

Here U / Oz is the partial derivative of the function U = U(z, y, z) for fixed
values of y, z.

\
%
) —gradU = —VU. (4.148)

¥ 8’|% SE

Proof
1. From Eq. (4.148) we get:

w= [ Frds=U(a)—U(®). (4.149)

since:

tb_> b_>
/ F.vdt= /(VU-dﬁ:
t a

a

_fa( dz + 5L dy + aUdz) — — [2dU = U(a) — U(b). (4.150)



The total differential dU is the change of U in the transition from the point?to
the infinitesimally neighboring point?—k drt

dU = Ldz + Ldy+ Zdz = gradU - dr. (4.151)

2. If a function U exists which fulfills

Wa = [ Fr ds = U(a) — U(b), (4.152)

the total energy of the particle is

E=L2 1U@). (4.153)

2m

The conservation of energy follows from the time derivative of E:

dE d [ p? d
-/ _ (2 —U =
dt dt<2m>+dt (2,9,2)

d
W(dgf +g—§)+vy(%+g—g)+vz(d$ +%) —0. (4.154)
—
If the force F does not depend on the velocity, the () brackets are independent of

v. Since v may have arbitrary values it follows that

d
P: = F, = — % etc.fory, z. (4.155)

For a conservative system of N particles we get:

— —
F; = —grad,U=-V,U (4.156)

for the force acting on particle i, with

U=U(ry,rs,...7x) . (4.157)



Example:
The potential energy of a particle is given by:

U=%+b, (4.158)
with
r? =z 4+ y? + 22, (4.159)

The associated force is a central force:

_>
F=—grad(2) = a % (4.160)
using
EH 40 - Dz (4161
o (1\ d[1 or (—-1\y
oy\r ) dr\r oy \r2 )r’
0o (1\ d/[1 or [(—1)\z
oz \r ) dr\r 9z \r2 )r’
4.4.3 Invariances of U; Separation of Center of Mass Energy
Translational invariance
The property
U(r;) = U(r; + a) (4.162)

for any Vectorsﬁimplies that U may only depend on the internal coordinates of the
system (of N particles), e.g. on the distance vectors

7;. =7 _?j : (4.163)
such that
U=U(ry). (4.164)

— —
From V;U = —V ;U we obtain
(4.165)



since?Zj = —?ﬁ This is the actio=reactio principle, from which, together with
the equations of motion, we have derived the momentum conservation law. The

momentum conservation is therefore a direct consequence of the translational
invariance of U.

Rotational invariance
In case of rotational invariance we have

Ur) = U@, (4.166)

where r; ' emerges from r; by an arbitrary rotation. It follows that U is only a
function of the distances

ri; = [y — 7] (4.167)
i.e,
U= U(’I’ij) . (4.168)

The force acting between 2 particles i, j then is a central force:

P i v
Fij = f(rij)rij (4.169)

since for any function f{r) holds:

il _df or _ df z _ .
5 f(r) = 55 = - = =g(r)z; alsofor y,z. (4.170)
The angular momentum conservation holds for central forces, which is
therefore a consequence of the rotational invariance.

Invariance with respect to time translations
When discussing the conservation of energy, we have assumed that U does not
depend explicitly on time ¢,

L —-0. (4.171)

This equation can also be understood as a consequence of the invariance of U
against time translations, t — t + At for any At. The energy conservation law is
therefore a consequence of the invariance with respect to time translations.



Galilean invariance

In this case the scalar function U = U(?Zj) does not change for a Galilean
transformation. The kinetic energy is:
r_ 1 e 432 P 2 (4.172)
T =35> ,mi(vi—v) =T —P-v+ 5Mv*. :

: : — = — .
Since for a system with U = U(r;;) the momentum P = ). m; - v; is conserved,
the kinetic energy only changes by an additive constant,

T' =T + const , (4.173)

i.e. the energy for a closed system

E =T+ U = const (4.174)

is Galilean-invariant like the momentum and angular momentum.
If we specifically choose the coordinate system X as the center of mass system,

_>
P = 0, we get:

T'=T+ s Mv* =Ty + T . (4.175)

T;,.: here is the internal kinetic energy, T'; the center of mass energy with

respect to the system X’ with velocities@ ’.Since U = U(r};) in the transition

¥ — X’ does not change, we can always separate the center of mass energy in a
closed system,

E=T,+ Eu , (4.176)

where Ejy is the energy in the center of mass system.

4.4.4 Friction Forces
All fundamental forces known to us are conservative in the sense of equation

Wa = [ Fr ds = U(a) — U(b), (4.177)



i.e. the energy law applies. This includes the case of the Lorentz force (force of a

_>
magnetic field B on a charge g moving with Velocityﬁ,
— —
F=10xB). (4.178)

_>
Since F'is always perpendicular to the direction of motion,

%
F.-v=

[

(% B) - 4=0, (4.179)
it doesn’t do any work; thus it doesn’t affect the energy balance.

Additionally, there are forces that enter into the energy balance and increase
the loss of energy in the system: frictional forces. They become important for the
description of the motion of a body in a gas or a liquid or on a surface (sliding

friction). In the simplest case frictional forces are proportional to v:

_>
F.——cv:c>0. (4.180)

Then the system suffers a loss of energy because of

%
[ Fr W dt = —c [[*v? dt < 0. (4.181)

ta

The occurrence of frictional forces does not contradict the statement that all
fundamental forces are conservative because frictional forces are not conservative
forces, but a result from a more general description of the interaction, e.g. between
the molecules of a rolling ball and those of the surface where the ball is rolling.

Addition: vector property of gradU

1.
Addition

IfU (?5 =U; (?5 + U, (?5 it follows from the rules of differentiation:

gradU = grad U; + grad Us , (4.182)

the vector addition law defined for vectors. It also holds for multiplication by a
real number ¢,




a gradU = grad(aU) . (4.183)

Transformation behavior for rotations

The scalar function U(?5 assigns a real number to each point in space r that
does not change when the coordinate system is rotated. Accordingly for a
scalar function U under rotations we have:

U(xlax%xfi) — U’(xllaxéawé) ) (4.184)

where the components of r (see Sect. 2.3.2) are rotated with the matrix d;; like:

It follows from the chain rule for differentiation:

oU'(z},xh,xy) U (z1,22,23) 333 OU (z1,29,3)
Bl = 2 o, =24 5, (4.186)

i.e. the components of grad U transform under rotations like the components of
7 In Eq. (4.186) we have used:

Yo diwmi =, i dikdijzy = ) 0z = T, (4.187)

employing (4.185).

In summarizing this chapter we have defined forces and derived Newton'’s
equations of motion; their solution provides the trajectory of a mass point in space
and time. Examples for characteristic problems have been given and the explicit
solutions been derived in detail. We have found that instead of velocities or
angular velocities it is more convenient to introduce momenta and angular
momenta of particles since for closed systems - without external forces—the total
momentum is a constant of motion. This also holds for the angular momentum if
no external torque acts on the system and is a consequence of Galilean invariance.
We have examined the connection between the work done by a force on a particle



along its trajectory and the actual kinetic energy. In case of conservative forces one

can introduce a potential energy U(75 that allows to compute the actual force by
its negative gradient. Then the energy of the system is defined by the sum of
kinetic and potential energy and—for closed systems—is found to be a conserved
quantity, too. The energy balance, however, does not hold for frictional forces
which are some ’effective’ forces that result from a more general description of the
microscopic interactions, e.g. between the molecules of a rolling ball and those of
the surface.
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5. Applications of Newton Mechanics

Wolfgang Cassing!
(1) University of Giessen, Giefen, Hessen, Germany

In this chapter we will continue with applications of Newtonian mechanics for
central forces, where the potential U only depends on the magnitude of the

relative distance |?>1 —?;\ between two mass points. In this case the
conservation of momentum, angular momentum and energy holds, which
drastically reduces the number of free degrees of freedom. An important case
are 1 / r2-forces, which holds for Coulomb and gravitational forces; we will
classify the trajectories according to their energy and derive Kepler’s laws for
the motion of planets. In extension the law of gravity will be derived and
gravity fields are introduced for static mass distributions. In addition the
dynamics of a linear oscillator is discussed—another important physical
system—and the solutions are calculated from the equations of motion also in
case of additional frictional forces. The case of a damped oscillator, that is
driven by an external periodic force, will lead to the formation of resonances
that are analysed in some detail. In addition the problem of coupled harmonic
oscillations is addressed, which is characteristic for the vibrational modes in
crystals.

5.1 Central Forces

One of the most important problems in theoretical physics is the motion of 2
mass points under the influence of a central force with applications in
astrophysics, atomic physics and nuclear physics.

5.1.1 Reduction of Degrees of Freedom
We consider a closed system of two particles without any external forces,

%
F,=0. (5.1)
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A central force acts between the particles

- -
Fiy = —gradU = f(r) = —Fxn (5.2)
with
T=T =11 — Ty = . (5:3)

. L . — —
The equations of motion in the coordinates r1, 9,

— —
m171 = Fio, mady = Foy (54)

can be rewritten in center of mass and relative coordinates (M = m; + my):

Ty = (mary A marh),  T=Th 7. (55)
From
m171 + m272 = 1?'12 + ?'21 =0 (5.6)
we get
a0, = 0. (5.7)

The solution is known: this is a straight, uniform motion for the center of mass.
For the relative motion one obtains (by taking the difference)

— —
- = . o
al—azz%—%: (le_f—mLz)Fl% (5.8)

or

N = -

with the reduced mass y,




_ 1oy 1 matmy (5.10)

This reduces the two-body problem to the equivalent one-body problem

for a fictitious particle of mass p under the influence of the force ? Instead of 6
differential equations there are only 3 differential equations to solve.

With the help of the energy and angular momentum theorem, the problem
can be reduced to only a single degree of freedom (in the variable r). From the
conservation of angular momentum

%
[ = const (5.11)

it follows that the motion proceeds in a plane. Thus we can - without
restrictions - employ the parameter representation (in the x, y plane)

[ rcos o |
= l\r sin go/l. (5.12)
0

Furthermore, only the energy of the internal motion is of interest,

Ei = %,wv2 +U(r), (5.13)
which we can rewrite as:
1 .2 12
Eint = g + 5= + U(r). (5.14)

This equation only contains a single variable (r) and its time derivative (7)
(for fixed I).
Proof For the velocity we get from (5.12)

{f'cosgo\ l—rgbsingo\
V=g dsing )y rpcosy ) — e, + rdey. (5.15)
0 0

Since
(5.16)



er-e, =0,

we obtain

_ B — 2 B2 2 .2 5.17
E = 5(rer +roey) +U(r) = 57 +r°9*) +U(r). (517)

The angle variable ¢ can be eliminated using the magnitude of the angular
_>
momentum [, which is constant in time:

[ = MWX;T: prio q.e.d. (5.18)

Note: The total angular momentum of the two particles can be decomposed in
an 'outer’ (center of mass) part and an 'inner’ part. For central forces both parts

are separately conserved in the absence of external forces.?denotes the
internal part, i.e. the relative angular momentum of the two particles. Equation
(5.17) can be interpreted as energy for a 1-dimensional motion in the variable r
with an effective potential energy

Ul = 5.7 +U(7), (5.19)

thus

E = Lpi? + Ul(r). (5.20)

The term from the kinetic energy 12/(2ur?) = U, is called centrifugal
potential and is added to the potential energy.
To explain the term "centrifugal potential” we calculate the associated force,

_>
F,=—gradU, = J—;Eﬁ = ,werE)a, (5.21)

i.e. the product of i and the centrifugal acceleration.

5.1.2 Classification of Trajectories
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Fig. 5.1 Example for a potential U,y that is positive everywhere and decreasing with r

>

s

dU/dr < 0forallr

Since U, is also repulsive everywhere, U, éff(r) (with the convention
U elff(oo) = 0) has the following qualitative shape (Fig. 5.1):

For fixed energy E only orbits with r > rg are possible, since for r < rq the
kinetic energy T is negative, i.e. the velocity 7 will be imaginary. The permitted

trajectories are called unbound states or scattering states.
d*U/dr? > 0 forall r

lim Ueg(r) — oo (Fig. 5.2).
7—00

Since 7). > 0 must always be positive we only get bound states for
L ST ST

Normalization: Uess(00) = 0 (Fig. 5.3).
For EZ > 0 one gets unbound states (green dotted area), bound states
for £ < 0 (green area).

Normalization: Uegt(00) = 0 (Fig. 5.4).
For E > U,, there are only unbound states for arbitrary r > 0. If

0 < E < U,, both bound and unbound states exist. For E < 0 there are
only bound states.
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Fig. 5.2 Example for a potential that only allows for bound states

Fig. 5.3 Example for potential that allows for bound states (£ < 0) as well as scattering states (£ > 0)
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Fig. 5.4 Example for a potential with only unbound states for arbitrary » > 0 and £ > U,, (green dots). For
0 < E < U, both bound (green) and unbound states (green dots) exist, while for E < 0 only bound states
can appear

Equilibrium: In cases (1.) and (2.) there is no force for » = r. since

<%>r:r =0 (522)

The same applies to case 3.) at 7 = r,,. In these points the system is in
equilibrium.

In cases (1.) and (2.) this equilibrium is stable but in case (3.) the
equilibrium is unstable: for a small deflection from the equilibrium position a
repulsive force acts, which drives the particle away from the equilibrium
position at 7.

5.1.3 1/r?-Forces

For the practically important case
U==%; c>0 (5.23)

we want to determine the trajectories explicitly.
The internal energy in this case is

E = %wﬂ + 25;"2 + & = const (5.24)

and energy conservation gives:
. .o 2
‘fl—f:O:r(,ur—#iFr%). (5.25)

Since in general 7 # 0, the equation of motion follows as:

i — L5 F 5 =0 (5.26)
ur r

For [ = 0 the motion occurs along a straight line (¢ = 0):

T=0 -7

(5.27)



To find the possible trajectories r = 7(y) for [ # 0, we introduce the new
variable

_ 1.t dw _ dwdr _ 1 d
w = 7w1th£ = d—‘:é = —ﬁﬁ (5.28)
and with (¢ = I/(ur?)) we find
_drdp _ .dr _ 1l dr _ 1l dw
T dodt —Pdp T wide T Wy (5.29)
as well as
ol ddw 1l &w . 2 d2
P —wwd T war P T T (530)

Then the equation of motion (5.26) turns into:

2 2 c
- (_ngg fwt 7_2) =0 (5.31)
or (1> # 0)
2 c
T8 +w=TFh (5.32)

The solution of the inhomogeneous differential equation of 2nd order (5.32) is
the sum of the general solution of the homogeneous differential equation for v,

2 | -
3+ =0, (5.33)

given by
W = A cos ¢ + Bsin ¢ = a cos (¢ — o), (5.34)

and an arbitrary solution of the inhomogeneous equation. A particular solution
(for d?w/dp? = 0) is
w=TF4r. (5.35)

The general solution of (5.32) then reads:

w=acos (¢ — ) F %, (5.36)



or with (5.28)

r(F1 + € cos (¢ — vo)) = p, (5.37)

using the abbreviations

al L (5.38)

é?:ﬁ, p:NC.

The integration constant a or € is determined by the energy. Using elementary
algebra we obtain (5.37)

s o ndr 1 p esin(p—po)
ree de — pr? (Fl+ecos(p—gpo))? (5.39)

and (after a somewhat lengthy calculation) for the energy

BE=4p24 L e ro(2_q), (5.40)

2ur? r 212

Equation (5.37) is the general form of a conic section. By appropriately
choosing the coordinate system to which (r, ¢) refers, we can rewrite (5.37) in

the normal form

r(Fl+ecosp)=p, €>0. (5.41)

We consider different cases:
1. U = —c¢/r: attraction, i.e. 7(¢) = p/(1 + € cos ). Then the following
cases are possible:

(a)

(b)
0 < € < 1:ellipse; there is also a bound state with £ < 0 (Fig. 5.5).
(c) € = 1: parabola; in this case E = 0, it is an unbound state.

¢ = 0: circle; there is a bound state with £ < 0.




(d)
€ > 1: branch of a hyperbola that encloses the origin 7 = 0; unbound
state with & > 0 (Fig. 5.6).

2.
U = c¢/r: repulsion, i.e. 7(¢) = p/(—1 + € cos p).
We must require € > 1, otherwise r would turn negative, and get the
branch of the hyperbola that is complementary to the case 1.d) (Fig. 5.7).

Examples:

e Atomic systems:
An example for case (2.) is electron-electron or proton-proton scattering.
For the electron-proton system the orbits from case (1.) are possible, i.e.
there can be bound states as well as scattering states (depending on the

energy E).
e Planetary motion (see Sect. 5.2).

A\ 4

N
/

Tle
eS|

F’, F = focal points

Fig. 5.5 Case of an ellipse, which is a bound state with E' < 0. The center of mass is located in the focal point
F

asymptotics

Y



Fig. 5.6 Branch of a hyperbola that encloses the origin » = 0 and shows an unbound state with E > 0. The
center of mass is located in the focal point F’

¢

asymptotics

Fig. 5.7 Complementary branch of a hyperbola that does not include the origin 7 = 0 and shows an
unbound state with E > 0. The center of mass is located in the focal point F

5.2 Planetary Motion; Gravity
5.2.1 Kepler’s Laws
Kepler’s laws describe the kinematics of the motion of planets:

1.
The planetary orbits are ellipses with the sun in a focal point.

2.
The radius vector from the sun to the planet passes the same areas in
equal times.

The squares of the orbital periods of different planets behave like the
cubes of the semi-major axis of their elliptical orbits.

The second law is the area law and shows, together with the 1st law
containing the statement that the orbits are planar, that the angular
momentum is conserved. The force responsible for planetary motion is a
central force. Since the orbits are ellipses with the center of force in one of the
focal points, we conclude from Sect. 4.4.2 that the central force is of the form

F— G (5.42)

i.e. the potential energy is of the form

C

Ur)=-2, ¢>0. (5.43)

These equations therefore are the dynamical basis for Kepler’s laws (1.) and

(2.



To explain the third law we use the area law

dF l
g T 20 (5.44)

where we replaced the mass m by the reduced mass . Integration in time
gives:

l
F=5.T, (5.45)

where T is the orbital period and F is the area of the ellipse:

F=mab—T= #ab, (5.46)

if a is the major axis and b the minor axis of the ellipse. Replacing

1.
r' + r = 2a (definition of the ellipse)

2.

a? = b2 + c*> = b% + £2a® with e = ¢/a (Pythagoras)
3.

(2a — 'r)z = 12 = 2 4 4¢? + 4er cos ¢ (cosine theorem according to 1.)
4.

r(1+¢ cos ) = (a®> —c?)/a=b*/a=1p
and using

12 = pep = ,uc%z, (5.47)
we obtain:
72 2 A _ (5.45)

According to Kepler the pre-factor should be 47r2u/c and be equal for all
planets. To check this, let’s look at the general

5.2.2 Law of Gravity

after which any 2 (electrically neutral) mass points at a distance r attract each
other by a central force

(5.49)



— —
_ Y1Y2
F - —T T

Here 7; and v, are characteristic constants for the mass points that are
proportional to the masses m; and ms (in the equation of motion). This
statement is by no means trivial, but follows from experiment, e.g. the free fall:
For a freely falling body (near the earth’s surface) we find

ma = — i, (5.50)

where m is the inertial mass of the body, v and g the constants for the
body and the earth; R is the radius of the earth. If we now compare the free
fall of two bodies 1 and 2, we have:

mia; M1

maaz 2 (5.51)

Since one always finds a; = a5 experimentally, we obtain

m; _ N

ms s (5.52)

Accordingly the mass m and the factor «y differ by only a universal constant
factor such that the force can also be written as:

Fo _pmm? (5.53)

r2 r

for two bodies with masses m; and m» at a distance r.

The constant 7y is (up to a dimensional factor) denoted as heavy mass of a
body. Equation (5.52) then implies the equivalence of heavy and inertial
mass.

Kepler’s 3rd law (5.48) with ¢ = I'm1m then reads as:

2 Ax*mum 3 _ 47 3
T = c(ml—i—lm;)a T I‘(m:}—mQ)a’ : (554)




The ratio 7' / a therefore is (practically) constant for all planets since
Myplanet < Mgyn-

5.2.3 Equivalence Principle

Due to the equivalence of inertial and heavy mass (5.52) the force acting on
a body of mass m in the earth’s gravity field is

%
F=mg, (5.55)

where the gravitational field strength ?is independent of the properties of

the body under consideration. Therefore, every body experiences the same
acceleration at a certain place

a=7. (5.56)

This result has an important consequence:
If an observer notices that different (electrically neutral) bodies at the same

place experience the same acceleration g, he can interpret this in two ways:

1.
The system is an inertial system Y and is located in a gravitational field

. .
that gives the same acceleration g for every body.

The observed bodies are free with respect to some inertial system Xz, but
the observer system is located in an accelerated system X', If its

.. = . . .
acceleration is d, the acceleratlonE»k measured relative to Y/ is connected

with the acceleration aj with respect to X, by:

), = a) — do. (5:57)

If the bodies under consideration are free, a;, = 0, then they experience an

acceleration relative to the observer in ¥’ given byE»k = —E)o. The
experimental finding thus can also be explained with ag = —g.

Conclusion: An observer cannot determine whether his laboratory is in
a homogeneous gravity field or in an accelerated reference system. This
equivalence principle is the basis of the theory of general relativity.




5.2.4 Examples

ORI . .
Weightlessness in an earth satellite

(ii)

Minimum velocity for leaving the earth’s gravitational field

According to Sect. 5.1.3 the escape condition (limiting case of the
parabola!) is given by

E = juw? — ¥ =, (5.58)

where Rg is the earth’s radius, M g the earth’s mass and m the mass of the
considered body; p is the corresponding reduced mass, which may be replaced
by m as long as m < Mg; v is the relative velocity of the body to the earth.
From equation (5.58) we get for the escape velocity

vp = \/ e 10t (5.59)

Sec
regardless of the mass of the body as long as m < ME.

5.2.5 Gravitational Field of a Static Mass Distribution

. 7 —
A mass m/ at position ' = 0 exerts the force to another mass located at ' # 0

%
F=mg (5.60)

with

)
o) = —Im T (5.61)

Interpretation: The mass m/ creates a gravitational field at the position?,>
whose strength (gravity field strength) is determined by?(?} The field
strength?is a vector function that assigns a triple of real numbers to every
pointin space??i.e. 9 (75, 9y (75, gzm, which during rotations behave like the

components of a vector. Here g(ri shows always in the direction of the

coordinate origin.
The potential energy corresponding to the force (5.60) is




U = mé(r) (5.62)

with

o(r) = — I | (5.63)

T

The quantity gb(?} is called the potential belonging tog.> Knowing qb(?s one
can calculate g(r) via:

?: —grad ¢ . (5.64)

The function qﬁ(?j describes a scalar field which assigns a real number to

every point in space.
We can visualize the gravitational field of a resting mass point by its field

lines: The tangent to a field line gives the direction of the force at each point?>
and the density of the field lines is a measure of the magnitude of the force. In
the case of an individual mass point the associated field is always directed
radially. The surfaces of constant potential then are spherical surfaces, whose
common center lies at the origin of the coordinate system (see Fig. 5.8).

equipotential
surface

fieldline

Fig. 5.8 Gravitational field lines and equipotential surfaces in case of a single mass located in the center



General statement:

When moving any test mass within an equipotential surface the potential
¢ does not change,

— =

dp = Gdw + Gody + 32dz = (grad ¢) - =g -&’=0. (5.65)

Since d?;é 0, it follows that?is perpendicular to the equipotential surfaces.
This applies to every field whose field strength can be written as the gradient
of a scalar field.

Of practical significance is the application to (discrete or continuous) mass
distributions. According to the superposition principle (Chap. 1.2)

the gravitational field strength, generated by N mass points m; at the
positions??, is given by:

gr) = T m; (ﬁﬂl , (5.66)
or the potential ¢ by:

$(r) = TR (5.67)

For a continuous mass distribution the sums are replaced by integrals:

) =T [ o(r" ;;; d*r' (5.68)

and

#(r) = —T [ 4EL oy, (5.69)

[r=r"|

where 9(7) denotes the mass density.



Example: Homogeneous sphere of radius R :

I<R
Q(?)/) _ {QO T =

0 else (5.70)

We carry out the volume integration within polar coordinates (see Fig. 5.9).

Fig. 5.9 lllustration of polar coordinates for the volume integral in case of a homogenous sphere

Using
2 do? d
ol = (7—7) =72 4+r?2—2rr' cosd d—jﬁ‘ = 20% = 2rr' sin ¥;
20 = 2rr’ sin 942 (5.71)
we find
R o 027 dr'r'dd r'sindd
6(r) = —Tao I loly = (5.72)

R pm p2w 12 . R o
9 d 27 max
= —I‘QO/ / / dr'ddd T 51.n A QO/ / r'dr'do.
o Jo Jo rr!’ sin ¥ dd r 0 Jo

min

Case 1:7 > R (Umaw =r+ r,aamin =T — ’l",)

27T R
¢(;5 _ rrgo (fo rir+7 —(r—r")) dr' = _% . %QORiﬁ — —%. (5.73)
Only the total mass M and the distance r determine ¢(r).
Case 2: 7 < R For the integration we distinguish: i) » > 7/, i.e.
Omaz =T+ 7, 0min =7 —7"and i) > r,ie.omez =7 +7,0min =17 — 1.
Elementary integration gives:



r R
o) = — 2L (/0 r'(r 41— (r—7')) dr' + / r'(r+1 — (' — 7)) dr')

T

_ __2nTo (fy 2rdr' + fTR r'2r dr') = —4nT g {RTQ - ﬁ] - (5.74)

r

The gravitational field g(ri then follows as negative gradient of ¢(75, i.e.
%
gr) = ~Vg(r).

5.3 Small Oscillations
5.3.1 The Linear Harmonic Oscillator
The equation of motion for a linear harmonic oscillator is:

mi = —kx , k>0, (5.75)
or with
wi= L (5.76)
i+ wiz = 0. (5.77)

The general (real) solution to the differential equation (5.77) is:

x = A; cos wot + Az sin wyt (5.78)
or

z = C sin (wot + 9). (5.79)

The general solution contains 2 integration constants A; and A5 or € and .
In (5.79) 4 gives the phase of the oscillation at time ¢t = 0; the amplitude C is
linked to the energy which can be found as follows: the potential energy of the
oscillator is
(5.80)



such that the energy is given by

E = %ma';z + %kaﬂ = const. (5.81)

or (with k = mw%)

E = %2 {mw? cos? (wot + 8) + k sin® (wot + 8) } = kTCQ (5.82)

At the inversion points x = £C the kinetic energy T' = 0 while the
potential energy U(+C) is maximum. In the equilibrium position (z = 0) the
potential energy U = 0 and the kinetic energy is maximum (see Fig. 5.10).

U
A

/

T
E=U E=T y
/ u

u=0

Fig. 5.10 Energy balance in case of a harmonic oscillator

E=T+U=const.

\ 4
P

Example: Thread pendulum (Fig. 5.11).



Y
X
Fig. 5.11 Coordinates in case of a thread pendulum

The change in angular momentum is given by

%
4], = L (mi%p) = (7>< F),= —mglsin ¢ (5.83)

or
¢+ 4 sinp=0. (5.84)
For small deflections, sin ¢ ~ ¢, we get
¢+ wip =0 with w} = 7. (5.85)
For larger pendulum deflections one obtains an anharmonic vibration.

5.3.2 Damped Oscillator
We extend the equation of motion (5.77) to:

i+ wir + 26t = 0, B> 0, (5.86)

where the velocity-dependent term (25z) describes damping. With the
solution z(t) = e we get by insertion into (5.86):

A+ wd+260=0 (5.87)



with the two solutions

A= —BE4/B —wi. (5.88)

The general solution of (5.86) is a linear combination of the basic solutions
e? and e*2!. For the further discussion the following cases must be
distinguished:

(i) 8 < wo (weak damping) With

\/ B2 — wi = iw (5.89)
we can write the general solution as
z(t) = (Aje™t + Aye ) et (5.90)

with the integration constants A; and A,, or as a real function:

z(t) = ce ? sin (wt + 6). (5.91)

This equation describes a damped oscillation (see Fig. 5.12).

x(t) 1

Fig. 5.12 Time dependence of the amplitude x(¢) in case of a weakly damped oscillator

(ii) 8 = wy (critical damping) In this case A; = A3 and the approach
x = e only provides one of the two basic solutions. The second basic solution
turns out to be



z(t) = te P, (5.92)

The general solution in the aperiodic limit takes the form:

z(t) = Are Pt + Aste Pt (5.93)

(iii) 8 > wy (strong damping) We set

\/ B —wi=7>0 (5.94)

and obtain the general solution:

z(t) = (A1e " + Asert)e AL (5.95)

In this case we get an aperiodic motion; for 3 > ~ the amplitude x(t) — 0

for large t.
Energy balance: Multiplying (5.86) by ma gives:

4 (mg2 4 ka?) — _2ampBi? < 0. (5.96)

The oscillator is constantly losing energy due to friction (~ ).

5.3.3 Forced Oscillations; Resonance

We now consider a damped harmonic oscillator driven by an external force f{t)
described by the equation of motion:

i+ wiz + 262 = L f(t). (5.97)

m

The general solution is composed of the general solution of the
homogeneous equation and a specific solution of the inhomogeneous equation;
the latter we determine for the important special case of a periodic force,

#f(t) = fo cos wt. (5.98)



Choosing

z(t) = £ cos (wt — ) (5.99)
we obtain from (5.97):
£((wf — w?) cos (wt — ¢) — 2Bw sin (wt — @)) = fo cos wt. (5.100)
After squaring (5.100) and using the addition theorems
cos (o — ) =cos a cos B+ sin a sin
sin (& — B) =sin @ cos f— cos a sin (5.101)
we get for the phase ¢:
tan ¢ = w?é& (5.102)
and for the amplitude
_ fo
£= Nomeavr (5.103)

In addition to the special solution to the inhomogeneous equation, there is
also the general solution of the homogeneous equation, i.e. a free damped
oscillation. Due to the factor e this part decays in time and for long times

only the inhomogeneous solution remains as a stationary solution

independent of the initial conditions.

The amplitude £ and phase ¢ of the stationary solution have the following

form as a function of w (see Fig. 5.13):




/2

Fig. 5.13 The phase ¢(w) for the driven oscillator

For small frequencies w the system follows the external force (practically)
without delay: ¢ — 0 for w — 0. With increasing w the phase ¢ increases,
reaches 7/2 for w = wy, where the frequency of the external force is equal to
the natural frequency w of the oscillator, and approaches the value 7 for
w — 00, where the osillator is in antiphase to the external force.

For the special case 8 — 0, ¢ changes suddenly from 0 to 7 for w = wy
(dashed line in Fig. 5.13).

The amplitude ¢ has the value fo/wg forw = 0. Ifwg > 232, £ grows with

increasing frequency w, reaches a maximum for w, = 4 /w% — 242 < wg and
then approaches monotonically towards zero (see Fig. 5.14).

§

Fig. 5.14 The amplitude &(w) for the driven oscillator



For strong damping, 28% > w%, no maximum is formed; £ tends towards
zero as w increases, starting at f /w3 for w = 0.

Of particular importance is the frequency w = wy. There the phase ¢ passes
the value 7r/2 and the work done by the external force becomes maximum

(energy resonance).
Proof We calculate the average work done on the oscillator by the external
force during time T' = 27 /w :

W=+ [V f(t) & dt =2 [1 &(t) cos (wt) dt, (5.104)

where
z(t) = —€w sin (wt — ). (5.105)

Result

Bmf2u?
W, = i
f (w?—wf) "+(2Bw) (5.106)
From

() = L Prhe g (5.107)

(w2 —wf) +(2B0)”

one finds that the average energy transferred to the oscillator W¢ has a
maximum for w = wy.

The supplied energy W exactly compensates for the energy which the
oscillator loses due to the damping—averaged over the period T- (5.96), i.e.

T 2m T .
Ws= 4 [ 9L gp = 278 (132 4t = —Wy. (5.108)

Examples:

1. Ionic crystals, e.g. NaCl
If a light wave falls on such a crystal the oscillating electric field of the
light wave generates a vibration of the positively charged ions relative to
the negatively charged ions. The crystal absorbs energy from the light
wave; the energy absorption of the crystal is maximum when the frequency



w of the light coincides with the natural frequency wq of the crystals
vibration.

By tuning an electrical resonant circuit one can adjust the natural
frequency wy of a radio to the frequency w of the radio wave of a specific
station. The receiver then dominantly absorbs radio waves of the desired
station.

Microwave oven

By tuning the frequency of the microwave w( resonant vibrations of H,O
molecules are excited; the absorbed vibration energy is converted into
thermal energy by interactions.

5.3.4 Coupled Harmonic Oscillations
Simple example: 2 coupled strings (Fig. 5.15).

=X,

Fig. 5.15 Two particles of mass m; and m3 are coupled by a string with strength k and attached to the outer
walls by strings of strength k; and &,

Two particles with masses m; and ms, which can move only in a single
dimension (x-axis), are coupled by an attractive force (k), which is proportional
to the difference between the deflections from the rest position (z; = 0,
x2 = 0). The particles are also attached to their position by spring forces (k1,
ko) to their resting positions. Then the equations of motion are:

mlfél = —klzcl — k(a:l — 332) (5.109)

m2.’:é2 = —k2x2 — k(:cg — :1:1). (5.110)

The terms —k;x; and —k,x, are “external forces” but
k12 = —k(x1 — x2) = —ko1 is an “internal force”, for which the actio = reactio
principle applies.

To solve the equations of motion we transform to:



i1+ wle) = Loxy (5.111)

my
By + wiTy = -2 (5.112)
with
2=bho =12 (5.113)

Structure of the problem:

For kK = 0 we have 2 decoupled oscillators; for k # 0 rhe right sides of
(5.111) and (5.112) describe the coupling.

We continue to consider the simplified case:

mi=ma=m ; ki = ks = ko = w1 = w2 = wp (5.114)
leading to:
1+ w%wl = %332 (5.115)
Ty + w(2)33‘2 = %331. (5.116)
With the Ansatz
1 =ajcoswt ; Ty =aycoswt (5.117)
we obtain
(Wi —w?a; — Lay =0 (5.118)
and
—£a; 4+ (W} — w?)ay = 0. (5.119)

In order to find non-trivial solutions for the unknown coefficients a; and a9 of
the linear system of equations, the determinant of the coefficients must vanish:
(5.120)



Wh-u?)
k 2 N 0
~m (wo — w?)
thus:
(w2 —w?)? = £, (5.121)

The solutions are:

1.

wa = v/ ko + 2k/m; this leads to:
ap = —az, (5.122)

i.e. the particles oscillate in anti-phase (antisymmetric vibration).
2.
ws = 4/ko/m: In this case we get a symmetric oscillation,

ai = ag, (5.123)

i.e. the spring k is not vibrating at all and therefore the particles oscillate at
the undisturbed frequency w = 4/ kg /m, as in case of no coupling.

In case (1.), however, the spring k during the vibration is stretched or
pressed together. The general solution is a superposition of both solutions and
reads:

;= A, cos (wet + ay) + A, cos (wet + ay), (5.124)

Ty = A, cos (wet + a,) — Ay cos (w,t + ay). (5.125)

It contains 2 - 2 = 4 free constants (A,, A,, a,, a,) corresponding to the
number of degrees of freedom of the system.
The vibration types found above suggest to introduce normal coordinates:

s = T1 1+ T2 (5.126)

4o = T1 — T2 (5.127)




The variables ¢, g, then follow decoupled equations of motion,

s + (wf — £)gs =0, (5.128)

)ga = 0, (5.129)

as can easily be found by insertion into (5.115) and (5.116). Accordingly
one finds for the energy:

m . ko m . ko k 2
E = ?x% - 73}% + ?xg + 7x§ + E(xl — x3)

. k . ko+2k
= Zog2 + gl + gl + 2l (5.130)

The method for decoupling vibrations—as outlined above—by introduction
of normal coordinates is generally possible in the harmonic approximation.

Example: Vibrations of molecules and crystals.

In summarizing this chapter we have presented important applications of
Newtonian mechanics for central forces, where the potential U only depends on

the magnitude of the relative distance ]71 —72| between two mass points. In
this case the conservation of momentum, angular momentum and energy holds
which drastically reduces the number of free degrees of freedom. An important
case are 1/r2-forces, which holds for Coulomb and gravitational forces; we
have classified the trajectories according to their energy and derived Kepler’s
laws for the motion of planets. In extension the law of gravity has been
formulated and gravity fields been introduced for static mass distributions. In
addition the dynamics of a linear oscillator was discussed and the solutions
have been computed from the equations of motion also in case of additional
frictional forces. The case of a damped oscillator, that is driven by an external
periodic force, has lead to the formation of resonances that have been analysed
with respect to the energy balance. In addition the problem of coupled
harmonic oscillations was addressed that is solved by introducing ‘normal’
coordinates which decouple the equations of motion.



© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
W. Cassing, Theoretical Physics Compact |
https://doi.org/10.1007/978-3-031-95512-9 6

6. Relativistic Mechanics

Wolfgang Cassing!
(1) University of Giessen, Gief3en, Hessen, Germany

So far we have introduced classical Newton mechanics which, however, has different
transformation properties than Maxwell’s equations for electrodynamics. This incompatibility
has been solved in Einstein’s special theory of relativity: we have to replace the Galilei
transformation between inertial systems by the Lorentz transformation that keeps the
velocity of light c invariant in all inertial systems. We will derive the Lorentz transformation
explicitly (in a simple case) and discuss its implications: Lorentz contraction, time dilation,
simultaneity in moving systems as well as causality and the limiting velocity of signals. Some
mathematical aspects of the Lorentz group of transformations will be discussed and Lorentz
scalars, four-vectors and Lorentz tensors are identified as well as corresponding physical
quantities like four-current densities. We close the discussion of relativistic dynamics by
introducing the energy-momentum four-vector, which is conserved in all four components for
closed systems and discuss scattering problems. As an example the important problem of
Compton scattering of a photon on a resting charge q is computed explicitly. The derivation of the
Lorentz transformation of the force will finalize this chapter.

6.1 Special Relativity
6.1.1 Lorentz Transformations
Galilei’s principle of relativity (see Sect. 3.1.2) is:

The basic laws of mechanics exist in all inertial systems and have the same form.

If there are two inertial systems X and X’ linked together by a Galilean transformation
(see Sect. 3.1.2)

=T — Ut =t (6.1)
we obtain for the velocities:
o =7~ (6.2)

The relationships (6.1) and (6.2) have to be used, if two inertial observers—moving with

7 .
constant velocity vy relative to each other—want to compare measurements.
Newton’s equations of motion (as the basic laws of classical mechanics) are indeed invariant
for Galilean transformations, since according to (6.1) and (6.2) we have for the acceleration
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i (63)

and the mass in Newtonian mechanics is a property independent of the state of motion for a
mass point. The conservation laws for energy, momentum and angular momentum are also
Galilean invariant statements (see Sects. 4.3 and 4.4).

Galileo’s principle of relativity is well proven for ‘small’ particle velocities. Difficulties arise,
however,

0
(i)

for ‘fast moving’ particles and

in the connection with electrodynamics, especially optics.

Consider a light source moving—in relation to the observer—with the Velocityﬁo, then
according to (6.2) the velocity of a light source emitting signal ¢ & v, will depend on whether
the light source and observer approach each other or remove from each other. Maxwell equations
(see electrodynamics)-especially the wave equations in vacuum-then could only apply to a
single reference system. All attempts (such as the Michelson experiment), to prove the existence
of such an absolutely resting system, have clearly failed.

The right conclusion from this obvious problem was drawn by Albert Einstein. His special
theory of relativity is based on 2 postulates:

(1)
The laws of nature are the same in all inertial systems.
(2)
The velocity of light in the vacuum is the same in all inertial systems.

Since the postulates (1.) and (2.) are not compatible with (6.1), (6.2), we have to find a new
transformation rule for the transition from an inertial system X to another inertial system X'

6.1.2 Derivation of the Lorentz Transformation

We consider two inertial systems 3, ¥’ moving with constant velocity v = v (for simplicity in
x— direction) relative to each other. A light signal is emitted from the origin O of X at time t=0,
where 0 just coincides with the origin O’ of ¥'. According to Einstein’s principle of relativity, 2
observers—in X and X’—must describe the propagation of the light signal according to the same
laws. For the observer in X the signal propagates as a spherical wave originating in 0, whose
front has the distance » = ct from O at time t. The wavefront is therefore determined by:

r? =z? +y? + 2% = 2t (6.4)

For the observer in ¥/ the center of the spherical wave is in O’; for him the following relation
applies instead of (6.4):

7,/2 — $12 + y/2 4 2:/2 — czt’2. (6.5)

The observations (6.4) and (6.5) are not compatible with (6.1) since it follows from (6.5) (with

(6.1)):



(z —ovt)® + ¢ + 2% = 2, (6.6)

which for v # 0 does not agree with (6.4). We now try to modify (6.1), (6.2) such that (6.4) and
(6.5) merge by the new transformation.
The transformation we are looking for must be linear such that the force-free motion of a

particle in the system X to any other inertial system X' is force-free: the trajectory r'= vt+ const.

in ¥ must be a linear one in 7’ and ¢’ when transforming to ¥’. Due to the homogeneity of space
and time we can always choose ¥ and ¥’ in such a way that for ¢t=0 the points 0 and O’ coincide;
the transformation then is homogeneous. For the case selected above

[v]
7: I\O/I (6.7)
0

we can always choose the axes in ¥/ such that the z’-axis constantly coincides with the x-axis due
to the isotropy of space. For a point on the x axis with y = 0 = zin X then ¢y’ = 0 = 2’ also holds
in X', The transformation

(z,y,2,ct) = (2',y, 7, ct)) (6.8)
then separates such that
(z,ct) = (2',ct) (6.9)
and
(:2) = (v, 7). (6.10)

By rotation around the x axis one then can always achieve that
y=y, z=M . (6.11)
Due to the equivalence of the systems X and ¥’ we must have A\ = 1, wich gives
v = Z =z (6.12)
For the transformation (6.9) we assume a linear transformation in x and t:

' =a1x+ aot; t = asx + aqt. (6.13)

Since the origin O’ of ¥’ relative to X has the velocity v, it follows from

0=a1x + ast (6.14)
immediately
Qs = —av. (6.15)
Thus (6.13) turns to:
(6.16)

z' = ai(x — vt); t' = asx + aqt.



We determine the remaining coefficients a1, a3, a4 from the requirement that (6.5) with (6.12),

(6.16) should give (6.4). For

(a? — alc?)a? + y2 + 2% = 2(a?v + c*azaq)wt + (c?a? — a?

to match (6.4) for all x, y, z, t the following conditions must hold:

2 2

2 _ 1. 2 2.2 _ 1. 2 2 _
aj —c‘az =1; a; — B%ai =1; ajv +c*azas =0

with the abbreviation

The combination of the first two equations in (6.18) yields
caa? = (a} ~ 1)(1 + Fad);

the 3rd equation in (6.18) (solved for aza4) gives:

a1f? = (af —1)(1 + B%) = af + a1p” — aif* - 1,

thus

—a?+1+6%32 =0 —al = 1

With (6.22) we obtain for (6.18):

ai-1 _ P

2 _ g 2. 2 _
ay =14 1775 = a1; a3 =

P

(6.17)

(6.18)

(6.19)

(6.20)

(6.21)

(6.22)

(6.23)

The choice of the sign is still pending: For 8 — 0 (6.12) and (6.13) should go over to (6.1), i.e.:

_ _ 1. _ B
a1 = a4 = \/1_—527 a3__C\/1—_,32. (624)
The Lorentz transformation then reads:
r . x—ut . r_ . r . t,_t—vw/c
T = \/m B y - y9 VAR Z, - 17ﬁ2 (625)
The inversion
p= Ly =g = e 6.26
ek Y=y, ; Wemre (6.26)

is obtained by replacing v by —w, i.e. by exchanging the systems X and X’ (of equal rights).

6.1.3 Space-Time Diagrams



The connections between inertial systems can be summarized and displayed in space-time
diagrams. Except for the coordinate £¢ = ct let’s consider another representative coordinate ;.
Points (x, 1), or generally (zg, 1, €4, x3), in this diagram are called events or world points.
The connection of two world points by a world line can be the path of a mass point or a light
signal.

It is crucial for the representation of events in different inertial systems that the world
distance of an event from the origin

s2 =22 —r? (6.27)

is invariant for Lorentz transformations (see (6.4), (6.5)). In the 2-dimensional
representation in the x¢, x; — plane the distance squared is

r? = z2; (6.28)
in general:
r? = 2% + 22 + 2. (6.29)

According to (6.4) the propagation of light, i.e. the world lines of photons, is characterized by

s2=0. (6.30)

In the 2-dimensional representation (6.30) reduces to the two straight lines
z1 = *txo; (6.31)

if we add another position coordinate x2, we get (from (6.31)) a cone by rotating around the xq
axis (light cone), in the general case we get a hypercone in 4 dimensions. Equation (6.30)
describes for ¢ < 0 a light signal arriving at the origin (0, 0) and for o > 0 a light signal
emitted by (0, 0).

The light cone divides the Minkowski space in 2 areas (Fig. 6.1) for

52 >0 and s < 0. (6.32)

The area s > 0 includes the past, o < 0, from which an observer in (0, 0) can receive signals,
and the future, x(y > 0, into which it can send signals. World lines that we can physically realize
always run in the area s2 > 0, since c is the limiting velocity for the transport of matter or energy
(see below).
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Fig. 6.1 Space-time diagram dividing past and future as well as time-like (dashed) and space-like areas

The area s? < 0 cannot be reached; we can neither get there (or send signals) nor receive
signals from there. In this (space-like) region there could be particles, for which the velocity of
light c forms a lower limit (tachyons). However, such speculations are without implications for
the further formulation of relativistic mechanics.

Note: The division of past, future and space-like world points (s? < 0) is the same in every
inertial frame since the separating light cone is Lorentz invariant!

In order to display 2 inertial systems X, ¥’ in a Minkowski diagram we write (6.25) in the
form

zo = Y(zo — Bz1); z1 = v(z1 — Bzo) (6.33)

using the abbreviation

v = ﬁl_w : (6.34)

The ] axis then consists of all points with z{, = 0; conversely, the x{, axis is determined by z}
= 0. It follows from (6.33):

0 = y(zo — Bz1) — xo = Bz1; 0 = y(21 — Bro) — T1 = B0. (6.35)

Thus the axes in X’ are straight lines through the origin (see Fig. 6.2); they are symmetrically to
the light cone and are inclined by the angle a with respect to the axes in ¥ with

tan a = . (6.36)

To define (time and length) units we use that the size s? is Lorentz-invariant. The intersection of
the hyperbola (or the single-shell hyperboloid)

s?2=-1 (6.37)



with the (positive) z; or z axis is the point (0, 1) in X or ¥’ and defines the unit of length. The
intersection of the hyperbola (or the double-shell hyperboloid)

s2=+1 (6.38)

with the (positive) z or z;, axis is the point (1, 0) in ¥ or X’ which defines the time unit.

Fig. 6.2 Illlustration of a Lorentz transformation in x-direction with velocity 8. The z¢ and x; axes are tilted by the angle « defined
by tan (@) = fin ¥’

6.2 Consequences of the Lorentz Transformations
6.2.1 Addition of Velocities

A mass point moves with velocity v'in 3,

- dr
v= o (6.39)

i - : s
We now look for the connection between v and the velocity of the mass point v’ that another
inertial observer found in ¥/,

7

_>
V=G (6.40)
To this aim we form the differentials to (6.25):
dz' = y(dz — vdt) = (v, —v)dt; dt’ =~(dt — Fdz) = y(1 - 2F)dt. (6.41)
Then we obtain
) _a TP TP
Uy = @ = U Tw/d) VY T/ (6.42)

and as well




b dd _de NI TP (6.43)

V2w T at (I—vv,/c?) Uz (1—wvv,/c?) ?

since dy’ = dy, dz' = dz. On the other hand, for v/, we get (6.41):

¢ di _ de V1B V=V
Vp = g = Car 1-w,/?)  (1-w./c?) (6.44)

Special case: For v, = v, = 0 the component vl becomes

! Vp—U

Ve = Aoy U; =0, v, =0, (6.45)

and we obtain for the limiting case

(1
1< ¢

v =, —v (6.46)

directly (6.2) and in the limit
(i)

v—c
V= ¢, (6.47)
thus showing that c plays the role of a limiting velocity.

6.2.2 Lorentz Contraction

We consider a rod of length [ in the system ¥ which is at rest and (for simplicity) located in x-
direction. The coordinates of the end points of the rod then are z{, 5 independent of time tin X
and

lo=z2—11 (6.48)

is the rest length of the rod. In order to calculate the length of the rod in a system ¥’—moving
relative to X with the velocity v in x-direction—one has to consider the coordinates of the end
points z}, =5 simultaneously in 3', i.e. at a time t] = 5 = t’; then the length

I'=z)— 2} (6.49)
is linked to [y according to (6.25) by:
lo =z —z1 =7(zh — ) =~ (6.50)
or
=2 <1, (6.51)




since v > 1. The observer moving relative to the rod in ¥’ finds its length to be shorter than
the rest length in ¥ (Lorentz contraction). Perpendicular to the direction of motion the length
measurements in X and X’ give the same result.

On the other hand, if an observer in ¥ measures a rod resting in ¥’, he also finds a
contraction according to the principle of relativity and not an elongation! The Lorentz

contraction does not change the object rod, but only the different points of view of the observers
inYand X'

6.2.3 Simultaneity

We consider two events that occur in the inertial frame X in the points 1 and x5 with 1 # x5 at
the same time t; = to = t. After the Lorentz transformation (6.25) the two events in another
inertial system X' then are not only spatially separated, | # x5, but also in time ¢] # t5: The

event occurring at time t and position z; in X is taking place in X’ at the time

th = y(t —vz1/c?); (6.52)
accordingly, the event occurring in X at the position x5 and time ¢, at time

th = y(t — vza/c?) (6.53)

in ¥'. Thus

At =th— ¢t 40 (6.54)

if 1 # x5. The simultaneous events in X are no longer simultaneous in X'

Simultaneity can only be defined in a specific system and is lost when switching to
another system! This implies that Newton'’s concept of an absolute time has to be abandoned.

6.2.4 Time Dilation

We consider a transmitter at position x in the system 3, which sends out signals at a time
difference

At =ty —t. (6.55)

For an observer in a system X/, which is moving with constant velocity v along the x-axis of &
follows for the time interval between the signals (6.25)

At =ty — t] = yAt > At. (6.56)

The time At’ measured in ¥’ is therefore longer than the proper time 7 = At of the
transmitter measured in X (time dilation). Observers in various inertial systems measure
different time intervals but via (6.56) all calculate the same proper time 7. In analogy to the
Lorentz contraction the time dilation is not a change in the object transmitter.

6.2.5 Causality and Limiting Velocity of Signals
The principle of causality states:



If an event A is the cause of another event B, then there cannot be an inertial system
in which B occurs before 4.

Otherwise by changing the reference system the temporal order of cause and effect would be
reversed.

As a consequence of the causality principle, the velocity of light ¢ in vacuum is an upper limit
for the transmission of information in the form of energy transport (light signal) or mass
transport (exchange of particles).

Explanation: A neutron may be created in the system X at point A4 (e.g. by the decay of an
excited nucleus) and move from position 4 to position B, where it decays. Then, according to the
principle of causality, there is no other inertial system X/, where for an observer the neutron in
B' decays before it is formed in A’.

We now assume that the neutron moves with velocity v = nc with 7 > 1 and show that this
contradicts the principle of causality: In ¥’ one finds for the time interval At’ between formation
and decay of the neutrons

At = y(At — vAz/c?), (6.57)

if ¥’ moves relative to X with velocity v along the z— direction. At is the running time of the
neutrons in ¥, Az the corresponding distance,

Ax = ncAt. (6.58)
This will give:
At = yAt(1 - L), (6.59)
and since we assumed 77 > 1, we can choose v < ¢ such that
(1-1)<o. (6.60)

In this case there would be a system X/ in which At’ < 0 but At > 0, i.e. in which the neutron in
B' decays before it was created in A’!

Note: The considerations above do not exclude that 'geometrical’ velocities > ¢ occur. For
example, a light spot, emitted from a laser beam from the earth to the moon, may move with a
velocity > c over the lunar surface. This does not contradict the principle of causality because
the path of the light spot on the moon is just the ensemble of impact points of individual light
pulses, each of which travels the distance from earth to the moon with the velocity c. The velocity
of the light spot is not the same as the transport of mass or energy on the lunar surface!
Velocities > c can also be achieved in the propagation of electromagnetic waves in dispersive
media in form of phase velocities (see electrodynamics).

6.2.6 Examples and Explanations

Lifetime of muons
An example for time dilation is provided by the observation of muons (%), which are produced
by cosmic radiation in the earth’s atmosphere and are observed at the earth’s surface. The muons
are created between h,,;, = 10 km and h,,,,, = 20 km above the earth’s surface; their minimum
running time is then
(6.61)
At = % ~ 30 - 10 %sec. = 30us.



However, the lifetime of a muon at rest is only 7 ~ 2 s, which corresponds to a maximum
running distance of ¢ =~ 600 m! Consequently, muons created in the earth’s atmosphere cannot
reach the earth’s surface at all according to Newtonian mechanics!

The apparent contradiction is resolved within the framework of Einstein’s theory of
relativity: The decay of muons is a structure property and therefore the lifetime 7 comparable to
the proper time of a clock. The lifetime in the rest frame 7 therefore has to be distinguished from
the time At measured by an observer on earth; equation (6.56) shows that for 8 ~ 0.98 the
above values for 7 and At are compatible with each other. On the other hand, the problem is
solved from the perspective of the muon’s rest system by the Lorentz contraction of the distance
from the upper atmosphere to the earth’s surface.

Lorentz contraction in the Minkowski diagram

We consider a unit scale at rest in X, which at time ¢ = 0 may have the endpoints O and A. In the
Minkowski diagram the scale moves perpendicular to the x; axis in positive z¢ direction. For an
observer in ¥/ the length of the scale is given by the distance O A’, which is obviously shorter
than the length unit OB’ in ¥'. For an observer in X the latter appears shortened to the distance
OB (see Fig. 6.3).

Fig. 6.3 Foran observer in ¥’ the length of the scale is given by the distance O A’ while for an observer in X the latter appears
shortened to the distance OB

6.3 Mathematical Aspects of Lorentz Transformations

In this section we will show that the basic equations of relativistic mechanics have the same form
in all inertial frames (covariance) and thus obey the principle of relativity. Before, however, we
will examine the mathematical structure of the Lorentz transformations.

6.3.1 Lorentz Group

First of all it will be shown that the Lorentz transformation is a complex orthogonal
transformation in a 4-dimensional pseudo-euclidean vector space (Minkowski space). To this
aim we introduce the following coordinates:

xo = ict, T =z, To =1, T3 = 2. (6.62)



The square of the length of a space-time vector in different reference systems ¥ and ¥’ then can
be written as:

3 3
D0 Th = Do T (6.63)
Comment:

The imaginary component zy might appear disturbing at first sight but this can be
counterbalanced by a redefinition of the metric in the scalar product

3 3 3
D onm0 TuTu = D no Ty Dy Gy (6.64)
with the new real component z, = ct (z}, = xj, for k=1,2,3) and the pseudo-metric tensor

[~1000)

0 0
G = L X OJ (6.65)
0 1

with determinant det (g,,,) = —1. An alternative to (6.65) is

o O = O
o = O O

[1 0 0o o0
10 -1 0 0 6.66
0 0 0 -1
Both choices have been used in the literature and one has to take care about signs in the
formulae presented according to the choice of the metric.
A general Lorentz transformation

T, =3, aumTiu,v=0,1,2,3 (6.67)

must keep the length of the vector (zg, 1, 2, £3) invariant:

Zi:o z? — 72— %2 = — % = const. (6.68)

In analogy to the 3-dimensional euclidean space this condition can be written as an
orthogonality relation for the transformation coefficients a,:

>0,k a0 = O, (6.69)
where a” is the transposed matrix to the matrix a. Equation (6.69) follows from:

iz 33‘3 = ZIL Zw/' Ay Q' TyTy' = Evu’{z,u anaHV’}meV' = Zw/’ 5VV’meV/ = Zl/ 3},2/(670)

For a Lorentz transformation in z; — direction with velocity 8 = v/c the transformation
matrix a,,, has the special form

6.71)



[ v —nB 0 0]
o |8 v 00
“”_ko 0 10)
0 0 01

withy2 = 1/(1 — B%).

The specification of the x;-axis contained in (6.71) can be corrected by an additional

orthogonal transformation in R? in the form of a rotation. This possibility is based on the fact

that Lorentz transformations form a group:

(1) If we carry out 2 Lorentz transformations one after the other,
ac; =, ATy mg =>, a;wac'y; (X=X =32,
the result
:vZ = Zl/,u a;ﬂ,aww# = Ma:)’ﬂmu; (X — X",

is again a Lorentz transformation because for the matrices a”, a’ and a we have:
T T
(a")"a" = (a’a)” (a’a) = a¥(aTa')a = aTa = 14,
since by definition

aTa = 14; (a')Ta' =14

(6.72)

(6.73)

(6.74)

(6.75)

with 14 denoting the 4 x 4 identity matrix. The connection between the elements of the

group is therefore the (4 x4) matrix multiplication.

(2)

The neutral element is the 14 matrix for Lorentz transformations with velocity v = 0.
(3) . . . .
For every transformation a there exists the inverse, since from (6.69) we have:
det(aTa) = (det(a))® = 1,
thus

det(a) # 0.

(6.76)

(6.77)

(4.) Since the matrix multiplication is associative, the associative law applies also to Lorentz

transformations.

The orthogonal transformations in R? (rotations and reflections) form a subgroup of

the Lorentz group represented by

10
d,, =
K (o dik>

with i, k=1,2,3 and

(6.78)

(6.79




S dldmy = 5.

The general Lorentz transformation (6.67) with the condition (6.69) is obtained by
combining (6.71) with (6.78), (6.79) and adding the time inversion

m; = T, ;1:6 = —Xy, 1= 1, 2, 3. (680)

The Lorentz transformations therefore include: rotations in R3, space reflections and time
inversion as well as the transition between inertial systems that move with a constant
relative velocity towards each other.

When there is a translation in space or time, this does not change condition (6.63)
because it only affects spatial and temporal distances.

To the group of homogenous Lorentz transformations (discussed above) we can
therefore add translations in space and time and then get the 10-parameter Poincaré group,
which has 3 parameters for spatial rotations, 3 parameters for Lorentz boosts with the

velocity v and 4 parameters for space-time translations. It is considered as the basic
invariance group of physical systems.

6.3.2 Lorentz Scalars, Vectors, Tensors
In analogy to the group of rotations we now define tensors with respect to the Lorentz group:

(1)
Lorentz scalar
We denote a quantity ¥ a Lorentz scalar, if ¥ does not change for Lorentz
transformations,

U0 =1 (6.81)

Examples are the electric charge, the mass squared M2 (see Sect. 6.4) or the space-time
distance squared s2.

(2)

Lorentz vector
We define a quantity A, to be a Lorentz or four-vector, if in Lorentz transformations

its components A, (4 = 0, 1, 2, 3) transform the same as the components z,,

Ay = AL =30 JauwA,. (6.82)

Examples:

(i) The partial derivatives of a Lorentz scalar ¥ with respect to z,, form the components of a
four-vector because:

o' _ v oz, __ K.'8
Bal = 2w Day 0, = dv O oy, (6.83)

using the inverse formula to (6.67):



Ty =13, ap,,m;,. (6.84)

(i)

The 4-divergence of a four-vector is a Lorentz scalar:

04, 04, 0A
20 Bat = 2w Dy Copluy oay 2o Do, (6.85)

considering (6.69).
(iii)

Choosing the components of the four-vector according to (6.82)

oYy

Ap= 520 (6.86)
we find (6.85):
Y, 2 =%, 2 ¥, (6.87)
i.e. the operator (A - C% g—;) =X, 8?0z’ thus is invariant for Lorentz

transformations. Then for a four-vector with components A, the (wave) equation

S, A= (8- 54 )AL (6.88)
transforms like the p-th component of a four-vector (see electrodynamics).
() The scalar product of two four-vectors is a Lorentz scalar:
S ABL =20, e AyBy =32, AyB,. (6.89)
(3)

Lorentz tensors of 2nd rank

Except for the scalars (= tensors of Oth rank) and the vectors (= tensors of 1st rank) we will
encounter tensors of 2nd rank. They are defined as 4 x 4 matrices; their components F,, have

the transformation property

Fr =300 GrGuo P (6.90)

6.3.3 Four-Current Density

ﬁ
As an example for a four-vector we examine the transformation properties of the sources j and p
of the electromagnetic field. The conservation of charge serves as a starting point:

_>
v.j+%: ) (6.91)




With the notations

jo = icp; J1 = Jas J2 = Jy J3 =17 (6.92)

we can write the continuity equation in four-notation as

> dn =0, (6.93)

Because of charge invariance (6.93) holds in every inertial system since (6.93) is invariant for
Lorentz transformations. Then—according to (6.85)—the components j, are the components of

a four-vector (four-current density).

6.4 Relativistic Dynamics

Newton’s equations of motion are invariant with respect to Galilei transformations but not with
respect to Lorentz transformations (cf. Sect. 6.1). The principle of relativity thus requires a
modification of Newton’s equation such that for velocities v < ¢ Newton’s equations remain
valid.

6.4.1 Momentum and Energy
We first consider the case of a free particle. The Newton momentum

— i
p= mo‘é—; (6.94)
is extended to a four-momentum p, with components given by
dz,
by = m()?, (695)

where 7 is the eigentime of the particle in its rest system and my its restmass. The eigentime
T is related to the time t in the system ¥, where the coordinates x, are defined, as follows:

t =7 7=0-3) =1 (6.96)

For v < cthe Lorentz factor v — 1 and the spatial components of (6.95) merge with (6.94). In
order to interpret the additional 0th component in (6.95),

d .

we recall that the p,, are components of a four-vector since m and 7 are Lorentz scalars.

However, the length of a four-vector is Lorentz invariant according to Sect. 6.3:
(6.98)




2 _ 2.2
>, P, = const = —mgc”.

The right side of (6.98) is obtained as follows: For the spatial components we have
p?=37% p?= miy2v?, (6.99)
where v is the magnitude of the Velocity?)of the particle. Furthermore,
pj = —mgy3c?, (6.100)

such that

> ph = mic? (V2 B? — %) = —mjc. (6.101)

To interpret py we expand 7(v) for v < c as:
moc?y = moc?(1 + %2 --) = moc? + Tmov? + - (6.102)

Since the 2nd term on the right side is the non-relativistic (kinetic) energy of the particle, it is
reasonable to interpret

e = myy(v)c? = m(v)c? (6.103)

as the energy of the free particle; the contribution

€g = moc? (6.104)

is its rest energy. Accordingly

T =e—e (6.105)

is its relativistic kinetic energy. Equation (6.101) can then be written as a relativistic energy-
momentum relation:

€2 = c?(p? + m3c?) (6.106)

and the four-vector (6.95) has the components

(£€,p1,p2,P3)- (6.107)




The equivalence of energy and mass in (6.103) has been confirmed by a variety of
experiments. Some representative examples are:

(1)

Binding energies of atoms and nuclei
For the deuteron the mass difference

Am =my,+m, —mg~3.5- 107 %g (6.108)
corresponds to an energy
€q = Am c® =~ 2.2MeV, (6.109)

which is the binding energy of the deuteron. In atoms the binding energy is orders of
magnitude lower: from

m, +m, —mpg ~ 2.4-10"%%g (6.110)
it follows for the binding energy of hydrogen

e ~ 13.5eV. (6.111)

(2)

Energy production in stars
One of the essential reactions for energy production in stars is the fusion of hydrogen (H)
to helium (*He). This elementary process has the mass balance

dm, + 2m, — mag, ~ 0.5 - 10 g, (6.112)
which gives about 25 MeV of energy gain.

(3)
Pair creation and destruction

When electrons collide with positrons, high-energy v quanta (hard photons) are produced,
et +e — 29, (6.113)

where the energy-momentum balance requires the appearance of 2 y-quanta. On the other hand,
a~y-quantum (> 1.02 MeV ~ 2m,c?) can be converted into an electron-positron pair,

y—et+e, (6.114)

if another particle (e.g. an atomic nucleus) ensures the momentum balance.
We generalize Newton’s inertial law for a free particle,

?: const, (6.115)

to

Py = const; rp=0,1,2,3, (6.116)




thus also demand that the Oth component, the energy ¢, is constant.
The generalization (6.116) of (6.115) follows necessarily from the transformation property of
pu- Since they are components of a four-vector the following holds for a Lorentz transformation

(in &— direction with velocity v):

€ =Y(v)(€' +vpy):pe = Y(v)(Py + 5€):py = PyiP: = P (6.117)

The mixing of space and time components leads to the fact that the conservation of
momentum and energy are only possible simultaneously!

We define the rest system of a particle (X’) by:

€ = moc?; p, =p, =p, =0, (6.118)

such that—according to (6.117)—in another inertial system Y we get:

e =v(v)e = moyc? = m(v)c2; Pz = Y(v) %€ = m(v)v; py=p.=0. (6.119)

Note:
For particles with my = 0 such as photons, a rest system cannot be defined because
according to (6.118), (6.119) in every inertial system we would obtainp, = 0, u = 0,1, 2, 3.

6.4.2 Scattering Problems

For the relativistic description of collision processes we define energy and momentum for N
articles as:

_>
N — N
P =73 pi e=Y" €, (6.120)

— . . .
where p; are the spatial components of the momentum of particle i, €; its energy according to
(6.103).
We now consider the collision of two particles

1+2—3+4, (6.121)

where (1, 2) denote the particles before the collision and (3, 4) after the collision. Since
asymptotically there are free particles (before and after the collision), the conservation of
momentum must apply:

e
p1+p2 —p3 —ps=0. (6.122)
But if the 3 spatial components of a four-vector disappear, then the 0th component must also

disappear according to (6.117),
(6.123)



€1 +€ —€3—€4=0,

i.e. energy conservation must also hold such that the conservation of momentum holds in every
inertial system. Energy and momentum conservation—as Lorentz-invariant statements—can
only hold simultaneously as pointed out above!

Example: Compton effect

We investigate the scattering of a photon from a free, initially resting electron. The energy of
the photon depends on the frequency w of the light wave according to

€y = hw, (6.124)

where /i == 197 MeV fm/c is Planck’s constant. It follows for the momentum (6.106)

(6.125)

since the photon has no rest mass (Fig. 6.4).

e\ P

_}
Fig. 6.4 Scattering of a photon on a free, initially resting electron. The final momentum of the electron is denoted by P while the
scattering angle of the photon is 0

According to energy and momentum conservation:

— — =
P=nk—k) (6.126)

and
cy/ P2 +mic? — moc? = h(w — ') (6.127)

for the kinetic energy of the electron after the collision. We square both equations

P? = n?(k? — 2kE' cos 6 + k), (6.128)
as well as
P2+ m2c® = m2c® + i2(k — k')’ + 2mohe(k — k'), (6.129)

and consider the difference:

(6.130)




(%n—%):7£cﬂ—cw0)

We get the change in the wave number of light as a function of the scattering angle 6. The
experimental confirmation of (6.130) is an important support for the description of a light wave
by photons, massless particles, whose energy and momentum are defined by (6.124), (6.125).

6.4.3 Equations of Motion

In generalizing Newton’s definition of force we introduce a four-force in Minkowski space via
its components as:

Ty = B () I, (6.131)

Here dr is defined in the instantaneous rest frame of the particle as a differential proper
time. The spatial components of (6.131) result in the relativistic generalization of Newton’s
equations of motion:

i —
% —~y1Z =F, (6.132)

%
where F' e.g. stands for the Lorentz force. With (6.99) we can also write:

& (moy(o)e) = F, (6133)

which for v < ¢,y — 1 leads to the non-relativistic equation of motion:
P —
mo? = med = F. (6.134)

Equation (6.133) has two possible interpretations:

M
One keeps the non-relativistic Velocityﬁand accepts a velocity-dependent mass,
%
4 (m(v)v) = F, (6.135)
with
m(v) = 7y(v) mo, (6.136)
or

(ii) one always works with the rest mass my, a Lorentz invariant quantity, and modifies the
definition of velocity:

— —
molL — F (6.137)

writh tha madifiad valacity
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o=~ (6.138)

¥(v)

The equations (6.135) and (6.136) show that particles of the rest mass m( # 0 cannot
reach the velocity v = ¢, since for

m(v) — oo (6.139)

in case of v — c an infinitely large energy would be necessary.
To discuss the component %, we use:

> Fupu = 5, p2) =0 (6.140)
due to (6.98), which gives
Z?:1 Zipi = —Fopo (6.141)

or according to (6.95), (6.97)

— .
Fo=iF T=iy) F7 (6.142)

o s

— —
Since F' - v is the work done by the force F' on the particle per unit of time, we can also
write

Fo = Lry(v)L (6.143)
or

Fy=(v) 'Fp= 1% (6.144)

as expected according to (6.107). The equations (6.142) and (6.143) confirm once again the
equivalence of energy and mass.

6.4.4 Lorentz Transformation of the Force
Since %, are the components of a four-vector, the following holds for a transformation from the
current rest system X to another inertial system X’ with the special transformation (6.71):

Fi =v(0)(F1 +iBF) = y(v)F1:.Fy = Fo;Fy = F3, (6.145)

since :#; = 0in X as the instantaneous rest system according to (6.142). In short:

— — — —
F1'=F; Z ' =) Z. (6.146)

Due to (6.132) the inverse relations hold

(6.147)



—

— — —
F,'=4/1-v%/c? Fy; F||':FH,

since in the current rest system X we have
¥(v) = 7(0) = 1. (6.148)

Result:
We have extended the basic concepts and basic equations of Newton’s mechanics to
relativistic mechanics in such a way that

0

Newtonian mechanics is regained in the limit v < ¢,
(i)
the modified basic equations are covariant with respect to Lorentz transformations.

In summarizing this chapter we have introduced Einstein’s special theory of relativity and
replaced the Galilei transformation between inertial systems in Newtonian dynamics by the
Lorentz transformation that keeps the velocity of light c invariant in all inertial systems. To this
aim we explicitly have derived the Lorentz transformation (in a single spatial dimension) and
discussed its implications: Lorentz contraction, time dilation, simultaneity in moving systems as
well as causality and the limiting velocity of signals. Some mathematical aspects of the Lorentz
group of transformations have been discussed and Lorentz scalars, four-vectors and Lorentz
tensors been identified as well as corresponding physical quantities like four-current densities.
We, furthermore, have discussed the relativistic dynamics by introducing the energy-momentum
four-vector, which is conserved in all four components for closed systems and discussed
scattering problems. As an example the important problem of Compton scattering of a photon on
aresting charge g has been computed explicitly. The derivation of the Lorentz transformation of
the force has completed this chapter.
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7. Formal Structure of Mechanics

Wolfgang Cassing!
(1) University of Giessen, Giefden, Hessen, Germany

The equations of motion of Newtonian mechanics can be written in different ways—depending on
the choice of coordinates—and in principle all independent choices have equal rights. However,
some choices facilitate the solutions of the equations of motion and others might cause severe
problems. It is thus of general interest to find ‘optimal’ coordinates for the description, which is
also of practical help, if the system is subject to constraints that require the introduction of
‘coercive forces’, which often are difficult to define. It is thus meaningful to define ‘generalized
coordinates’ that fulfill the constraints and also reduce the complexity of the problem by reducing
the number of (linear independent) degrees of freedom. The equations of motion in generalized
coordinates then are derived from Newton’s equations of motion. It will be found that these
equations can also be generated by a variational principle, which specifies a Lagrange function L,
which is given by the difference between the kinetic and potential energy in case of conservative
forces. An important consequence is that the Lagrange equations of motion can also be applied to
other areas of physics. Generalized momenta are defined by the derivative of the Lagrange function
with respect to the generalized velocities. Accordingly, if the Lagrange function does not depend on
a specific coordinate, e.g. the azimuthal angle ¢, the corresponding generalized momentum (here
angular momentum) is a constant of motion. This suggests to transform the formulation to phase-
space variables given by coordinates and their associated momenta, which is carried out by a
Legendre transformation defining the Hamilton function H. In case of conservative forces the latter
just gives the energy of the system in phase-space variables. The variational principle thus can be
reformulated in terms of Hamilton’s (equivalent) variational principle which leads to the canonical
equations of motion. The latter will be illustrated for a couple of examples. Furthermore, it will be
shown again that—for a closed system—the translational invariance leads to the conservation of
the total momentum, the rotational invariance to the conservation of total angular momentum, and
the invariance with respect to time translations to the conservation of the total energy.

7.1 Generalized Coordinates
7.1.1 Constraints

The starting point of Newtonian mechanics are the equations of motion for N particles in cartesian
coordinates:

L
mir, =F, ; i=1,2,...,N. (7.1)
Difficulties arise if the motion of the system is subject to constraints:

The coordinates?i— then are dependent on the constraints.

2. In order to comply with certain constraints one must introduce coercive forces which are not
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explicitly specified, but in some cases can only be determined from the solution.

Classification of constraints:

1.
Holonome conditions:

(a)

Scleronome conditions:
Examples:

e rigid body

2
T —7)) —c=0 ; i,j=12,...,N.(7.2)

¢ ball pendulum of length /

2?2+ + 2212 =0. (7.3)

(b)

Rheonome conditions

F(rh, .. T, t) =0 (7.4)

contain an explicit time dependence.
Example: ‘Pearl’ on a straight rotating wire.
2.
Nonholonomic conditions
explicitly require the solution of the equations of motion!
Example: Gas molecules in a spherical container, r; < R.

For holonome conditions we can solve the problem by introducing generalized coordinates
g; such that for

- =
r; = 7i(q1,- -, qs,t) (7.5)
the m constraints
fr("'—>17~-~7?>N,t):0 ;o r=1,2,...,m (7.6)

are identically fulfilled in the new variables g; and t. The variables g; are independent of each
other; if m constraints are given, then for N particles we have

s=3N-m <3N (7.7)
generalized coordinates g;.

7.1.2 Equations of Motion in Generalized Coordinates



Starting from Newton’s equations of motion we form the following (3N — m) differential

equations [with?i :?Z(ql)):

A N T
D i1 MUT P = Yo Fi a0 = Q- (7.8)
We write the left side as:
= o7, d — o7 — 4 (&
m;r; - 31 = a <miri . a_qz — m;r; - r aq | (7.9)
using
— o — v, d (1 2\ _
m;r; - dq1 iUi B a—q-l(jmivi) Bt (7.10)
because
a7 _ a—}_a A
a—ql”z—ﬁz—a—q,{zja—wqﬁw = Ba (7.11)
since Or;/0q; and Or;/0t do not depend on ¢;. With
d o\ _ %, . o 9 P R s
E(aq,> =2 2500 Y T Bgor = Bq > 2,4 T & ) = ag Vi (7.12)
we get for the 2nd term on the right side of (7.9):
= afom\_ > 87> _ 8 (1 2y _ 8
miV; * g ( 3q1> = MiVi * 54 Vi = Tm(gmivi) e a_qlTi- (7.13)
With the kinetic energy
_\N _ 1 N 2 _ .
T = Zi:l TZ =35 Zi:l mivi = T(q], q]’ t) (714)
we obtain after summation over all particles i:
d (T &
() -&r=0 (7.15)

To interpret the quantities @; it is sufficient to consider the case, where the time t does not

_>
occur explicitly. Then the work carried out by the forces F; for infinitesimal displacements d?? of

the particles, which comply with the constraints, is given by:

— RN B — 7: s
aw = 2511 F; - dr; = sz\il 21:1 F; - g—qld(ﬂ = lel Qudq:.

(7.16)



This suggests that the quantities Q; can be considered as generalized forces. Since the
displacements dq; were introduced in such a way that the constraints are fulfilled, coercive
forces cannot contribute, since they do only serve to comply with the mandatory conditions. This

_>
implies that when calculating the Q); from the forces F; (which additionally contain the
constraining forces) the coercive forces cancel out.

7.1.3 Conservative Forces
We consider the case, where a function U = U(q;) # U(d;) exists such that

oU
Qi=—5,- (7.17)

We then define the Lagrange function of the system by

L=T-U, (7.18)

and from (7.15) get the Lagrange equation of the second kind

d (8L _ 8L
a4 (a_ql> =& (7.19)
In analogy to Newton's equations
oL

defines generalized momenta. Then (for T' = T'(¢;))

d s — OL _ 09U __
WP =D1= 5, = 5, = QI (7.21)

achieves the form of a Newtonian equation of motion.

7.1.4 Examples
1. Particles without constraints: In this case the generalized coordinates are ¢; = (z, y, z); we
form

T=%@*+9%+2%) (7.22)
and get
or _ 0T _ 0T _ .o _ s O s OT
%_ay_az_o s 6i_mm’ 8y_my: 8Z-_mz' (723)



With

Q. =F, (7.24)
we obtain
%(%) =mi=F,=Q, (7.25)
etc. for y, z, which just gives Newton’s equations of motion.

2. Motion of a particle in the plane: For convenience we use polar coordinates (see Fig. 7.1), i.e.

T =TCOoS

; y=rsinp . (7.26)
Then we get for the velocities:
i::r%—kgog—z:f'cos«p—r(psingo ; y=rsinp+rocose . (7.27)
The kinetic energy amounts to:
T = 3@ +9°) = 57+ (7.28)
and
G =mrg? 5 L =0 (7.29)
G =mi ;g5 =mr’p (7.30)
For the forces we obtain
g e e S o
QT:F.%:F.%:FZ:FT (7.31)
= a7 g
Qy=F & =rF ¢, =rF,. (7.32)
The Lagrange equations then are:
mi —mrp? =F, %(mrﬂb) =rF, . (7.33)

In the right equation, m2¢ is the angular momentum, whose temporal change is given by

the torque rF, = @), which plays the role of a generalized force. Special case: For the flat
pendulum (see Fig. 7.2) we have the constraint:

r—1=0 |, (7.34)
if I is the constant length of the pendulum. In this case T reduces to
2, .
T=5Eg" o g5 =mle.

(7.35)
The Lagrange equations with U () = mgl(1— cos ¢) simplify, too:



mlp = F, = —mg sin ¢,

¢+wpsing =0 with w}=2.

For small deflections we may approximate sin ¢ ~ ¢ and thus get

»+ w%cp =0.
" Atwood’s machine
The constraint (see Fig. 7.3)
z1tay=l=z+ (l—x)
is identically fulfilled in the coordinate ¢ = z. Then the kinetic energy is given by:
T = %(ml +mo)z?
and the potential energy by
U= —migz —mag(l — z).
The Lagrangian is
L= %:&2 + migx + mag(l — )
and the Lagrange equation reads
4 (8L) = (mg + my)i
We get:
(m1 4+ m2)@& = (m1 — ma)g.
" Pearlona rotating wire
For (see Fig. 7.4)
z=rcos (wt) ; y=rsin (wt)
the kinetic energy according to (7.28) is given by
T = 2 (7 + r’w?).
The equations of motion for the force-free case L = T are
mit — mrw? =0

with mrw? as the well known centrifugal force.

(7.36)

(7.37)

(7.38)

(7.39)

(7.40)

(7.41)

(7.42)

(7.43)

(7.44)

(7.45)

(7.46)

(7.47)
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Fig. 7.1 The flat pendulum of length /

mg

Fig. 7.2 Tllustration of Atwood’s machine with a rope of length /

Iy =

Fig. 7.3 Pearl on arotating wire



Fig. 7.4 Choice of coordinates for motions in a plane

7.1.5 Velocity-Dependent Forces
The Lagrange equations of second kind hold for velocity-dependent forces, if a function U(g;, ¢;, t)
exists such that:

ou d ( oU
Q= —3, (a—ql) (7.48)

An important example for such a velocity-dependent force is the Lorentz force, which arises
from

UFED 1) = e(3( ) -0 A(r. 1) (7.49)

for a particle of charge e with Velocity;)(see electrodynamics). Here @(Fz t) is a scalar function

(related to the charge density) and A(?z t) a vector field (related to the charge current density).
The force (in cartesian coordinates q; = (z, y, 2)) is given by:

0A —
Fzze(—grad@—ﬁ—k(?xrotA)) ,

—

ﬁ
Fy:e(—grad@—aa—f—i-@x rotA))
y

- —
F,=e(—grad® — % + (7>< rot4)), (7.50)
using
dA, _ 0A; 0A, 0A, 0A,
“dt oz V= + Oy Uy+ 0z v, + ot (751)

Important note: For a gauge transformation

(7.52)

- = 5
A — A+grady ®— o X,



where the function xy = X(F: t) is arbitrary but continuously differentiable in all variables, the
otential transforms as

U—>U—e<7-gradx—l—%>:U—efl—’t‘. (7.53)

The equations of motion then do not change for a gauge transformation

d
L—-L=L+% (7.54)

with any twice continuously differentiable function g = g(g;, t). Due to
d 09 - 0
@ =2t e (7.55)
we have
d o ( dg _d [ 9g
$OEE)-5(8)

such that the additional term (7.56) in the Lagrange equation

d (0
= (8—;) (7.57)
is cancelled again by the additional term in the partial derivative with respect to g;
o (d
B (d—f) , (7.58)

since g = g(q;,t) was assumed to be twice continuously differentiable.

The invariance of the equations of motion for the transformation (7.52) implies that the
Lagrange function L itself is not uniquely determined.

We will exploit this property in field theory to derive the Lorentz force itself from ‘simple
considerations.

7.2 Hamilton’s Variational Principle

7.2.1 Variational Principle and Euler’s Equations

Let a system of N particles with m holonome constraints be described by generalized coordinates
gi- The values of the coordinates at a fixed time ¢ then determine a point in the configuration
space with dimension s = 3N — m that is spanned by the coordinates g;. The temporal evolution

of the system corresponds to a trajectory in configuration space with the time ¢ as a parameter
of the trajectory.



The actual trajectory—traversed by the system—is the solution of s Lagrange equations (7.19).
It is uniquely determined if—for fixing the 2s integration constants—

1.
at a time ¢, apart from the g;(¢1) also the generalized velocities ¢;(¢1) are known, or

2.
the trajectory points ¢;(t1) and g;(t2) are given for different times ¢ # to.

In the latter case we can indeed characterize the actual trajectory relative to neighboring
trajectories, which also pass through the points g;(¢1) and g;(¢2), by the fact that the action

S[‘]u%] - fttlz L(Ql’ qht) dt’ (759)

given by the time integral of the Lagrange function L(g;, §;, t), has an extremum for the actual
trajectory, i.e.

6S(a;, 4i] = 0. (7.60)

q, A actual trajectory

/

| neighboring
trajectory

A
~

t L

Fig. 7.5 llustration of an actual trajectory and a neighboring trajectory, which pass through the same points at ¢; and t2

In order to explain the variation principle (7.59) in more detail, we consider any neighboring
trajectory to the actual trajectory g¢;(t) (for small €),

qi(t) = qi(t) +emi(?), (7.61)

with the property that ¢;(¢) matches with the trajectory g;(¢) at the times ¢; and ¢, (see Fig. 7.5),
i.e.

ni(t1) = ni(t2) = 0. (7.62)
Then for
S(e) = [,? L(gi + eni, ds + eni ) dt (7.63)
(after applying (7.60)) must hold:
(7.64)



Explicitly this leads to:
t oL oL
b Zz{ aq, M T 8, m}dt =0. (7.65)

By partial integration in time for the 2nd term

2 0Ly dt = [

to
OL ta d oL
t1 Og; 0q; TIZi| t o t12 dt <8_%>77z dt (766)

it follows, since the integrated term [...] vanishes according to the assumption (7.62), that (7.65)
becomes

e - () pmidt =0 (7.67)

Since the functions n;(¢) are linearly independent and arbitrary in the time interval ¢; < ¢ < to,
the Euler equations of the variation principle are identical to the Lagrange equations

d { 0L oL __
4 (5) ~ L, (7.68)

Note: The variation principle not only offers an elegant formulation, which is equivalent to the
equations of motion of classical non-relativistic mechanics, but can also be applied to other areas
of physics, such as elastic media, electrodynamics, and field theory of elementary particles.

7.2.2 Canonical Equations
For the transition from classical mechanics to quantum mechanics and for statistical mechanics
it will be useful to transform from the variables {g;, ¢;} to an equivalent set of variables {g;, p; }. In
the following we want to derive canonical equations in the variables g;, p; which are equivalent
to those formulated in the variables g;, §; (7.68). Instead of the Lagrange function L = L(g;, ¢;,t) a
new function H = H(q;, p;, t), the Hamilton function of the system, will be introduced.

The transition in the variables

{gidist} — {qi, pir t} (7.69)
as well as

is performed by a Legendre transformation .
To explain the Legendre transformation, we first consider—as a simple example—a function
f(x,y) of the independent variables x, y. Then the total differential of f can be written as:

df = vdz + udy (7.71)
with
d d
v="9 u:a—g, (7.72)

where v(x, y) and u(x, y) are connected via



w _ 0 f _d
B_Z — Oyoxr 6_1;7 (7.73)

if fis assumed to be twice continuously differentiable. Now in the transformation
{z,y} — {z,u}, (7.74)
the function
wy — f(z,y) = g(z,u) (7.75)

can be represented alone by the independent variables (x, u).
Proof: For the total differential of g, which according to (7.75) is a function of x, y, u at first
sight, we get:

dg = udy + ydu — df = udy + ydu — vdx — udy = —vdx + ydu = g—gdm + g—idu, (7.76)

i.e. the function g in fact depends only on x and u = df/0y and no longer on y (g.e.d.). After
comparing the coefficients we find:

0 0 0
v:—a—gza—i; y:a_z- (7.77)

In analogy we now introduce the Hamilton function H by:

H(qi,pi,t) = 27—y ¢ipi — L(i, i, t)- (7.78)

Forming the total differential of H according to the definition (7.78),
dH = Zle{(jidpi + pidg; — g—;dqi - g—;dqi} - ?—é’dt, (7.79)

we obtain with the definition of

pi = 57 (7.80)
for the total differential of H:
dH = Y, gidps — Y7, g=-dg; — S dt. (7.81)
The comparison with
dH =7, $8dgi + 307, Sdps + Gt (7.82)
shows that (using the Lagrange equation):
gi = g{j ; Di=— 25{ (7.83)
and
o5 _ 6L (7.84)
ot ot




The 2s differential equations of first order (7.83), which are denoted as canonical differential
equations, replace the s differential equations of second order (7.68).

The system at time ¢t is now represented by a point in phase space with the dimension 2s,
which is spanned by the independent variables (g;, p;). Contrary to the configuration space, where
there is an infinite manifold of orbits at g;, that are distinguished by the generalized velocities g;,
there is only a single trajectory in phase space through each point (g;, p;) (in case of given forces),
since the values of g; and p; at a fixed point in time uniquely determine the temporal evolution of
the system.

Note: The canonical equations (7.83) can also be derived from Hamilton’s variational principle,
i.e.

t?{zipiq'i — H(qi,pi,t)}dt = extremum (7.85)

Equation (7.85) is equivalent to (Z.60), since (Z.85) arises from (7.60) using (7.78). The
‘variations’ of g; and p; are considered to be independent from each other.

7.2.3 Examples
(1)

For the one-dimensional harmonic oscillator the Lagrangian reads
1 D dL .
L= 5mv2 — 73:2, D= 5, = mg=mu, (7.86)
accordingly the Hamiltonian is:

H=gp—-L=2T-T+U=T+U = 5 (p* + wi m?z?) (7.87)

with w% = D/m. The canonical differential equations then are given by:

Gi=t=91 =2 =0 (7.88)
and
p=—% = Dz, (7.89)
or together (with w3 = D/m):
i+ wiz = 0. (7.90)

(2) Fora particle in the electromagnetic field with charge e and Velocityﬁthe Lagrangian is
%
L=T-ed+ev- A (7.91)

%
with a scalar potential ® and a vector potential A. The momentum components are:

Pz = g—i =mv,; +ed;, py = g—L =muy + ey, p, = g—i =muv, + eA, (7.92)

Uy



(3)

—>
and with m?z?— eA we get
_>
H :?-?— L :?-?— T+ed—-ev-A
— —
=7 (m?—i— eA) —T+ed — ev- A

5 2
:mv2—T+e@:T+e@:ﬁ<§>—eA> + ed.

The canonical differential equations e.g. for the components in x direction read:

b= O = Ty, = L(p, —edy)
pxz—%z—e%+%<?—ez)-%-
In summary:
mi = —e 8% 4+ &5 ed) B e,
or
mI = —e(g—i + 6511) —|—e<7>< (gx X)) .
z

Rotating coordinate systems

(7.93)

(7.94)

(7.95)

(7.96)

(7.97)

The relationship between two coordinate systems rotating around the z-axis with relative

g — .
angular velocity w = (0,0, w) = we, is:
z = ' cos wt — ¢ sin wt

y =2’ sin wt + 1y cos wt

For the time derivatives we get:
. ./ !/ . o /
T=T coswt — T wsinwt — Y sin wt — Yy w cos wt

Y= ' sin wt + z'w cos wt + 9’ cos wt — y'w sin wt

This leads to the kinetic energy:

T = gm(a? + 9% + 22) = B(&2 +§% + %) + mw(z'y — @'y) + 5= (27 + y?).

(7.98)

(7.99)

(7.100)
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For velocity-independent potentials U(x, y, z) the momentum components then read:

Pl = g—f — 37T = m(z' — wy') (7.101)
Py = g5 = gy = m(y +wa’) (7.102)

p. = g_f — g_f = m3. (7.103)

This results in the Hamilton function in the momenta pl,, p;,p; and coordinates z’, v, 2':

H=p 0 =T+ U= 5+ 05+t ~pa) + U (7.108)

m

The canonical equations are:

# =g = 2wy =, (7.105)
v = Z—Z = 2 —wr' = v, (7.106)
Y= ==y, (7.107)

_}

As in the 2nd example,7 is not simply proportional to p’. The time derivatives of the

momentum components read:

R e 7108)
Pl = UL~ By (7.109)
. O0H oU
pL= 2 _ o (7.110)

The combination of the equations above gives the well-known equations of motion:

. . 2 1 Fy
& — 2wy —win' = = (7.111)
i+ 2wi’ — wy = Fy (7.112)
m
. Fy

in which by default Coriolis and centripetal acceleration appear. For the explicit proof one
uses w = w e, and evaluates the Coriolis acceleration 2w x v’ as well as the centripetal



=
acceleration w x (w x??) for each component.

Note: Examples 2 and 3 show that the canonical momentum, e.g. p, = 0L/0v,, has to be
distinguished from the mechanical momentum muv,.

7.3 Symmetry and Conservation Laws

7.3.1 Cyclic Variables
If the Lagrangian function L(g;, §;, t) does not depend on the generalized coordinate g, i.e.

= =0, (7.114)
the associated Lagrange equation gives
d oL \ _
4 (aq_c) —0. (7.115)
The generalized momentum p is therefore a constant of motion,
pc = 4 = const. (7.116)

Generalized coordinates with the property (7.114) are denoted as cyclic variables.
Example: For a particle in a central field the lagrangian reads in spherical coordinates (r, ¥, ¢)

L =27 +r*0* +r?sin® 9 ?) — U(r), (7.117)
and is independent of the angle ¢, which is a cyclic variable. The associated generalized
momentum thus is a conserved quantity,

Py = g_i = mr?sin? ¥ ¢ =1, = const. (7.118)

7.3.2 Translation Invariance and Momentum Conservation

Due to the homogeneity of space the Lagrangian function of a closed system must be invariant with
respect to translations, i.e.

L(r, v}, t) = L} + d, 0}, 1); (7.119)
where dis an arbitrary vector and the same for all particle displacement vectors. Since the

translations form a continuous group it is sufficient to consider small shifts for which (by Taylor
expansion) follows:

%
Zi(g—fi% + 5oy + g—La> =Y, % d=0, (7.120)



i.e.

oL __
2y =0, (7.121)

since a was arbitrary. From the Lagrange equations of motion we get:

4 <Zi 2—£> =3 (Zﬂ) =0, (7.122)

i

thus

%
P = Zfilﬁ = const, (7.123)

which corresponds to the conservation of momentum.

7.3.3 Rotational Invariance and Angular Momentum Conservation
Due to the isotropy of space we must have—in case of a closed system—for sufficiently small
angles ¢:

L{F, v t) = L(rs + (@ x 70),0; + o(u x 03), 1). (7.124)

The vectors 7;, v; here are rotated by an angle ¢ around an arbitrary axis given by the unit vector u
. In analogy to the considerations in case of translation invariance, it follows by Taylor expansion:

i%-@)XﬁHZi%-@)XQ):O, (7.125)
or with the Langrange equations:
S (X7 + 200 - (W x W) = 0. (7.126)

— — —
With the cyclic invariance of the product,?- (b x?ﬁ =b- (?xﬁ) = (E>>< b), and the product
rule equation (7.126) simplifies to

— = =D e T = A
& (Ei(ri X i) - U) =2 <(vz' X pi) - u+ (ri X pi) - U> = 0. (7.127)
Since the unit Vectorican be chosen arbitrarily, we get
— —
L= L= Zz(?: XE) = const, (7.128)

i.e. the angular momentum conservation.



7.3.4 Time-Translation and Energy Conservation

The homogeneity of time allows us to set the time zero point arbitrarily. For a closed system the
Lagrange function is invariant with respect to the transformation

t—=t+T1 (7.129)
for any 7, i.e.
AL = . (7.130)
Using the Lagrange equations we get:
dL oL - L =\ _ d (oL - oL .\ _ d AL - \.
# =S+ o) =S (# (5 )+ 56) - # (S fa) o
accordingly
d oL . d
E(L_Zj%qj) ——4H—0 (7.132)
and thus
oL - .
Zj 00 40— L= ijjqj — L = H = const. (7.133)

The Hamilton function H of the system is therefore a conserved quantity. It is identical to the
energy E of the system, if conservative forces and scleronome constraints exist. We then have:

L=T-U, (7.134)
if U is the potential energy of the system, and
oL -
25 9q 9 = 2T, (7.135)
such that
T-U-2T=-H (7.136)
or
H=T+U-=E. (7.137)

The special role of the Hamilton function H is also reflected in the canonical differential
equations (7.83): the change of H with respect to a momentum p; determines the time evolution of
the associated coordinate g; and vice versa.

For the proof of (7.135) we use the fact that for conservative forces the potential U does not
depend on ¢; such that

(7.138)



oL _ OT

dq; — 04 °
For scleronome conditions we have
— =
T, = ri(qla .. aQS) (7-139)
and thus
— or, .
Vi = 25 g, 4 (7.140)

where a?i/aqj is a function of the generalized coordinates q; alone. The kinetic energy is therefore
a quadratic form in the velocities ¢;:

T=3Ymo =350 4, (7.141)

in which the coefficients aj only depend on the coordinates g;. Then

33: =00 G+ a5 4 =2 an 4, (7.142)
if one accounts for the symmetry of the coefficients aj = a;;. With (7.142) the proof completes:
Y, g, =3, g, =23, a0 4 = 2T (7.143)

In summarizing this chapter we have defined generalized coordinates, that fulfill the constraints
imposed on the system and also reduce the complexity of the problem by reducing the number of
(linear independent) degrees of freedom. The equations of motion in generalized coordinates then
have been derived from Newton’s equations of motion. It is found that these equations can also be
generated by a variational principle, which specifies a Lagrange function L, which is given by the
difference between the kinetic and potential energy in case of conservative forces. Generalized
momenta have been defined by the derivative of the Lagrange function with respect to the
generalized velocities. Accordingly, if the Lagrange function does not depend on a specific
coordinate, e.g. the azimuthal angle ¢, the corresponding generalized momentum (here angular
momentum) is a constant of motion. This suggested to transform the formulation to phase-space
variables given by coordinates and their associated momenta, which was carried out by a Legendre
transformation defining the Hamilton function H. In case of conservative forces the latter just gives
the energy of the system in phase-space variables. The variational principle then can be
reformulated in terms of Hamilton’s (equivalent) variational principle, which gives the canonical
equations of motion. The latter have been illustrated for a couple of examples. Furthermore, it was
shown again that—for a closed system—the translational invariance leads to the conservation of
the total momentum, the rotational invariance to the conservation of total angular momentum, and
the invariance with respect to time translations to the conservation of the total energy.
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8. Applications of the Lagrange Formalism

Wolfgang Cassing!
(1) University of Giessen, Giefsen, Hessen, Germany

Applications of the Lagrange formalism will be given in this chapter for the motion of rigid
bodies, which leads to the definition of an inertial tensor. The eigenvectors and eigenvalues
of this tensor define the main axes of inertia and main moments of inertia, respectively. From
the Lagrange function for the rigid body we will derive Euler’s equation of motion, which will
be studied for the case of a symmetric heavy gyroscope.

8.1 Motions of Rigid Bodies

As an explicit application of the Lagrange formalism we want to calculate the dynamics of a
rigid body. A rigid body is a solid body whose mass elements form a solid and have a
constant distance to each other such that they do not deform. Rigid bodies are also defined
by the fact that only translations and rotations can be carried out. To describe rigid bodies
we introduce two coordinate systems: an inertial system x, ys, 27 (Fig. 8.1) and a body-fixed
coordinate system x, y, z, which is firmly attached to the moving body (Fig. 8.2).

The motion of a rigid body consists of (i) a translation, in which the angular position of
the body does not change and all mass points have the same velocity, and (ii) a rotation
around a freely selectable coordinate origin O (Euler theorem). Since translations can be
described by three coordinates and rotations by the axis of rotation and the size of the
rotation angle, a freely moving rigid body has six degrees of freedom.

Since every motion of a rigid body consists of a translation and a rotation of the body-
fixed coordinate system by O the velocity vy of a point P—fixed to the body in the inertial
system—is given by

Fig. 8.1 Inertial system with axes z, y, 21
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X7 (8.1)

where
e vy = the velocity of the coordinate origin O in the inertial system

« W = the angular velocity of the rigid body in the inertial system
7: OP = the position vector of P in the rigid body coordinate system.

8.2 Kinetic Energy and Inertia Tensor
We assume that the rigid body consists of n mass points m,. The kinetic energy then is:

2

T =30 5 od, = Yy 5 o+ (& x 7)) (82)
— = — =2
=" M (vg + g - (WX 7rg) + ([w X 74) ) (8.3)
2
_ M, 2 n — n My —
=50 —I—gxw- a=1MaTa + Q. wXTr
b @) Mo may + X () (8.4
Ttrans TW Trot

with the total mass
M = ZZ:l Myg. (8.5)

The first term is the translation energy T};a,s, the third term the rotational energy 73,4 and
the middle term is an energy 7y, which is determined by translation and rotation both. If



%
the rigid body is free, the coordinate origin O is best placed in the center of mass S. Then
> maﬁl = 0 and the energy Ty disappears, i.e.:

T= Ttrans + Trot- (86)

The kinetic energy in this case is the sum of the kinetic translational energy of the mass M
(located in the center of mass) and the rotational energy from the rotation around the center
of mass.

If the rigid body is fixed in at least one point, the origin O of the body-fixed coordinate

system is placed in one of these points and since?o = 0 we get:
T = Tiot. (87)

The kinetic energy is equal to the rotational energy arising from the rotation around the
fixed point.
We now recalculate the rotation energy within the body-fixed components w; and x,;—

with ¢ = 1, 2, 3—of the vectors w and r,. With the notation

72 = (.’L’a, Ya, za) = (wala La2, xa.?,) a = 1, ... . (88)
and the identity
— 2 —2 3
@X b) =a®’ - (7' b) =>_i-1(aia;bb; — a;basb;) (8.9)
we obtain:
a — — 2 Mg 3
Trot = EZ:I 77; (w X Ta) = EZ:I =5 iyjzl[wiwixaj:vaj — wixaiwjxaj] (8 10)

1 n 3 3
=9 Zazl mq Ziﬁjzl wiW; [Zkzl CUakwakfsij — ZgiLaj

with the Kronecker symbol

1 for i=j
0ij 1= {0 for i# 7 (8.11)

In (8.10) the parameters (masses and positions) can now be derived from the projections

of the angular Velocityjon the body-fixed axes. To this aim we define the inertia tensor by

(8.12)

n 3
Lij =3 41 Ma [Zm TakTakdij — waz’fﬂaj]



and obtain

Trot = 5 Zijzl Lij wiw;. (8.13)

It should be emphasized that the components w; are the body-fixed components of the

angular velocity, i.e. the projections of w on the body fixed axes x,y, 2 = 1, 2, T3.
Note:

 If the rigid body only rotates around one of its body-fixed axes, i.e. only a single component

of w is different from zero, or if I;; = Iéij holds, the above equation gives the more
familiar result

T = ;1w (8.14)

If the rigid body forms a continuous mass distribution we define the inertia tensor by

Iij = fp(mla T2, 333) [Zi:l mkmkai_j — a:ia:j] dxidrodrs (8.15)

with the mass density p(z1, 22, x3). To clarify, we present the inertia tensor I;; (8.12)
also in matrix notation:

l y(21 + 2(21 —TaYa —TgZq \
I= ZZ:I mal\ —Yalg :EZ + ZZ —Yaza /I (816)
~Za%a  —ZaYa  To+t Y

for n discrete masses m,. In the case of a continuous mass density p(x1, z2, 3) we get
with (8.15):

l :c% +m§ —T1Ty —T1T3 \
I= fp(:z:l,:cg,xg)l\ —Tyzy T] + T3 —a:2:1:3/| dridzrodxs. (8.17)
—T3T, —T3Ty T2+ T

The diagonal elements of the inertia tensor are denoted by moments of inertia, the off-
diagonal elements by deviation moments.
The inertia tensor by definition is symmetric (8.12):

(8.18)
Ij; = I



and therefore, by introducing a new rotated coordinate system, can always be transformed to
diagonal form. The corresponding axes will be denoted by main axes of inertia
(eigenvectors), the diagonal elements I;; =: A; by main moments of inertia (eigenvalues).

The determination of the main axes of inertia, that pass through the center of mass, is
simple for symmetrical bodies: one main axis of inertia coincides with the axis of symmetry;
the other two main axes of inertia are orthogonal to it, but can be chosen arbitrarily. The
rotational energy for the main axes of inertia is:

Trot = 5 (A1w} + Aaw? + Asw?). (8.19)

Def.: A rigid body is called

rotator, if it is one-dimensional and its mass points only lie on an axis, e.g. the z axis,
such that A1 = A\g; A3 =0,

asymmetric, if all three main moments of inertia are different,
symmetric, if two main moments of inertia are equal,

spherical top if \; = Ay = As.
Tops are not necessarily balls. For example, cubes are spherical tops and cylinders of
height h = /3r, where ris the radius of the cylinder.

8.3 Angular Momentum

We assume again that the rigid body consists of n mass points m,. The total angular
%
momentum L;, in the inertial frame then is

— =
Liot = Y01 mq(rta X via). (8.20)

We denote the position vectors in the body-fixed coordinate system by r,, set

e
Tla = T0 + Ta, (8.21)

e
w

Vig = Vo + x?; (8.22)

and get:
- e L S s n —
Liot = M(ro X vo) + 70 X [w X (Zazl mara>]

(8.23)
(S mara) x o+ Sy ma (7o x @ x70)).



Free system:

If the rigid body is not held fixed at any point, we place the coordinate origin O back to
e - = — .
the center of mass S = ry = rg and vy = vg. Furthermore, from Za mqr, = 0 we obtain in

the transformed system:

Y — = n - o= e
List = Mrg x vg + Mgy X (WX 71y) =: M(rg x vg)+ L .
tot 5 X Ug Za_l aDaD( a (r's x vg) (8.24)
N
L
- —

The total angular momentum Ly is the sum of the term M (s X vg), which is the orbital

angular momentum of the center of mass motion with respect to the origin Oy, and the
— —
intrinsic angular momentum L for the rotation around the centroid S.

Fixed system:
If the rigid body is fixed in at least one point, we place the coordinate origin Oy of the
inertial system and the coordinate origin O of the body-fixed system in one of these fixed

. . — —
points and obtain due to ry = vy = 0:

—
L.

%
Lt = X", ma (?Z x (3><?;)) — (8.25)

%
For rotations about a fixed point the total angular momentum L, is equal to the intrinsic

%
angular momentum L, if both coordinate origins Oy and O are located in this point. With
Tx@xT) =w(r-7) - W) (8.26)

_>
the body-fixed components of the intrinsic angular momentum L get the form

Li=Y}, (ZL Ma [22:1 TakTaklij — a:m-a:aj} )wj =37 Tjw;  i=1,2,3.(827

Using the main axes of inertia as body-fixed coordinate axes the body-fixed components

%
of the intrinsic angular momentum L become:

L = \wi, Ly = Aaws, L3 = A3ws. (8.28)

_>
Accordingly, the intrinsic angular momentum L of a rigid body is generally not parallel to
the angular velocitya Only when rotating around a main axis of inertia the angular

— —
momentum L andjhave the same direction! The different directions of L andjare one of
the reasons for the mathematical difficulty in the description of rigid bodies.



8.4 Euler’s Equations

We now have to take a closer look at the angular momentum law. In general the inertia

tensor is only constant in the body-fixed coordinate system, such that it is necessary for the
%
equation of motion, i.e. primarily the time derivative of the angular momentum Lg, to move

back to the inertial system:
> — — —
Ls = % [22:1 MgTq X (w X Ta)j| = % [Zi,j Iijwjei], (829)

- = , : — = :
where w; = e; - w are the body-fixed coordinates of w and e; are the basis vectors of the
body-fixed coordinate system. With

_>
& =wxe (8.30)
we get:
- 2 3 L= = 3 —
ditLS = LS = Zi,jzl Iijwjei + w X Z'L’,jzl Iijwjei. (831)

The first term is the time derivative of the angular momentum for an observer in the
body-fixed system and therefore the basis vectors e; for him look constant. We denote this

%
body-fixed derivative by d; L, /dt and get

. — - =
%LS:LS: %LS +E>>< Lg = Ng, (8.32)

- = 2 . . . ~
where the vectors Lg,w, Ng are expanded in the body-fixed basis and Ng denotes an

external torque.
If the body-fixed axes are main axes of inertia, we find with L; = \;w; by multiplying

(8.31) or (8.32) by the basis Vectorsa,

e —
e gLy = e (X, hwieh) + k- (& x Xy Awieh) =€k No=Ne  (833)

for k = 1,2, 3 the coupled nonlinear Euler equations

A1wr — (A2 — Ag)waws = Ny
Aaws — (A3 — A1)wswi = Na

(8.34)

)\3(.«.)'3 — ()\1 — )\2)&]1&)2 = N3.



— — : : —
Here w; and N; are the projections of w and /N on to the body-fixed coordinate axes e;,
which must be the main axes of inertia.
As an example for the Euler equations (8.35) we examine the force-free, symmetrical

_>
gyroscope, i.e. Ng = 0 and A\; = As. The Egs. (8.34) then simplify to
)\1&51 — ()\1 - )\3)002(,03 =0
Awy — (A3 — Ap)wsw; =0

Aswg = 0. (8.35)

From (8.34) it follows that w3 = const. and accordingly

Q= )“"’/\_IM w3 = const. (8.36)

As aresult we get a linear coupled system in the variables w1, w», i.e. with (8.36)
w1 + Qw2 = 0, Wy — Qw1 = 0. (8.37)
We form another time derivative of the first equation, insert the 2nd equation and get
W1+ Q%wy = 0. (8.38)
The solution of (8.38) is
wi(t) = A cos (Ut + ) (8.39)

with a phase a to be determined by the initial conditions. We obtain the solution for wy(t) by
integration of the 2nd equation in (8.37) using (8.39):

wo(t) = A sin (Qt + ), (8.40)

such that with w?(t) + w3(¢) = A? the magnitude of @ is constant. The free symmetrical top
rotates with the frequency €2 around the figure axis.

8.5 The Euler Angles

Euler’s equations only determine the projections of the angular Velocityj(t) e = w;(t). We
now introduce Euler angles, which determine the angular position, i.e. the orientation of the
body-fixed coordinate system (and thus of the body) in the inertial system, very clearly.

The transition from the inertial system X  to the rotated rigid system X is carried out by
three rotations, as shown in Fig. 8.3, in the following order:



Fig. 8.3 Euler angles and rotations (see text)

1.
rotation by ¢ around the z;-axis. The x-axis goes over to the dotted 'nodal line’ 0V and

anew coordinate system (Z, g, Z) emerges.

rotation by ¥ around the nodal line ON. The inertial z; axis and the body-fixed z-axis
then have the angle 9.

rotation by 1) around the z-axis. We get the body rigid coordinate system (x, y, z).

The Euler angles determine the orientation of the body-fixed coordinate system and thus
also the rigid body relative to the inertial system: According to Fig. 8.3 the angles ¢ and ¢
give the position of the body-fixed z-axis in the inertial system. The angle 1 describes the
rotation around the z-axis.

The angular Velocityﬁis now written as the sum of the three Euler angular velocities

- = =
W, Wy, Wy AS:

o+ Wy + Wy (8.41)

We project these three angular velocities onto the rigid body coordinate system in order to
obtain the components w, ws, ws.

L w,, in the inertial system has the components

0
Wor = {-\0/\-, (8.42)
P

and in the body-fixed system:
(8.43)



[ siny sind |
— . .
w¢:<p\cos¢ s1n19/:.
cos ¥

— . . A oA oA
wy in the coordinate system (Z, g, 2) has the form

[ 9]

=~

Wy = I\O/I, (8.44)

0
such that in the body-fixed coordinate system we have:

[ cosy |

— 3 .
Wy = 19-\— sin z/)/- (8.45)

0

For the angular Velocityjd, we get:
L
Wy = 1\0 /I (8.46)
(G

The body-fixed components of & we obtain by adding the components:
lwl\ [ ¢ sindsinp | [ coswﬁ |

wyp =1 @ sindcosy p+| _ g 90 1- (8.47)
'\wz/ I\ Y cos v /I I\ Sln0¢ dj/l

—
w =

8.6 Lagrange Equations of the Rigid Body

With the preparatory work done the Lagrange function is set up easily. For a symmetric
system with A\; = A9, whose body-fixed coordinate system coincides with the main axes of
inertia, we get:

: .2
Trot = % > lijwiw; = %ZZ Aiw? = %(gbz sin® 9 + 92) + %(cp cos ¥ + 1) . (8.48)

Example: Heavy gyroscope

A popular example for the application of the Lagrangian formalism is the symmetric top
in the homogeneous gravity field, in which a point different from the center of mass on the
axis of symmetry is fixed. Such a top is denoted by heavy gyroscope.



A g

Fig. 8.4 Rotation of a heavy gyroscope (see text)

The zero points of the spatial and body-fixed coordinate systems are shown in Fig. 8.4 as
well as the support point of the gyroscope. With the potential energy U = mgl cos ¢ it’s
Lagrangian function according to (8.48) is:

. . .92
L=T-U-= %(cp2 sin? § + 92) + %(g@ cos ¥ 4+ ¢) — mgl cos 9. (8.49)

Here A1 = A2, A3 are the main moments of inertia for rotations around the support
point, m is the mass of the top and [ is the distance of the center of mass from the support
point.

It follows that the angles ¢, ¥, which represent the rotations about the z;- and the z-axis,
are cyclic and their momenta are conserved quantities:

Dy = g—{; = A1 sin? 9¢ + A3(¢p cos 9 + 1/)) cos ¥ = const. (8.50)

_>
D, is the space-fixed zy component of the angular momentum L and

pw — g_i — )\3((‘5 CcOS 7_9 —|— 'l/.]) = )\3(,()3 — const. (8.51)




In the general case of a non-symmetric gyroscope with A\; # A2 # A3 we get the
Lagrangian function L by substituting (8.47) into (8.48), which leads to somewhat more
lengthy expressions, since L then consists of the angles 1, ¥ and the time derivatives ¢, 19, 1,b
explicitly, only the variable ¢ is cyclic, if the potential does not depend on ¢, i.e. U # U(¢p).
The Lagrange equations of motion are modified correspondingly and their solutions become
more subtle.

In summarizing this chapter we have given applications of the Lagrange formalism for
the motion of rigid bodies, which lead to the definition of an inertial tensor. The eigenvectors
and eigenvalues of this tensor define the main axes of inertia and main moments of inertia,
respectively. From the Lagrange function for the rigid body we have derived Euler’s equation
of motion and solved these for the case of a symmetric heavy gyroscope.
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9. Dynamics in Phase Space

Wolfgang Cassing!
(1) University of Giessen, Giefden, Hessen, Germany

Although the Lagrange formalism is a convenient method to tackle complex problems,
it is of advantage to formulate the dynamics in phase-space variables, i.e. in generalized
coordinates and generalized momenta. In this case the time evolution of an observable,
that not explicitly depends on time, is given by Poisson brackets which are
determined by the derivative of the observable and the Hamiltonian with respect to the
phase-space variables. The elementary Poisson bracket between generalized
coordinates and generalized momenta will turn out to be unity for associated pairs and
their time evolution is given by the Poisson bracket with the Hamilton function, i.e. by
the canonical equations of motion. The Poisson brackets thus allow for an algebraic
formulation of the dynamics. However, the choice of generalized coordinates is not
unique and invertible transformations between the coordinates are allowed, too. But
not all transformations are meaningful, since some transformations may lead to
equations of motion that are no longer canonical. Allowed transformations then will be
given by point transformations and extended canonical transformations, that keep the
equations of motion canonical invariant. Furthermore, the elementary Poisson
brackets will be shown to be invariant with respect to canonical transformations such
that a formulation of classical mechanics is achieved, which is independent on the
choice of the generalized coordinates. This will pave the way to quantum mechanics,
where the Poisson brackets will be replaced by commutators of operators in an
abstract Hilbert space. This also will lead to a rigid formulation of statistical mechanics,
where the physical system—in equilibrium—is described by ensembles with
properties, that are defined by expectation values of conserved quantities and their
fluctuations.

9.1 Temporal Change of an Observable

We here attempt to ‘directly’ determine the temporal change of an observable
O = O(qi, pit) (9.1)

of the system under consideration, such as the energy, the momentum, the magnetic
moment in an external field etc. We do this by writing the total time-derivative of O as
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do 00 . 00 - 00
G = i (3_%.(1@‘ + TmPi) + 5 (9.2)

and use the canonical equations:

d0 _ S 00 0H _ 00 9H 20
. Zi_l(@qi dpi (91)1‘ dqi ) + ot * (93)

Equation (9.3) can also be written in terms of Poisson brackets defined by:

{u,v} — Zj:l( Ou Qv __ Ou Ov ) (9.4)

0q; dp; Op; dg;

This leads to the shorthand form:

9F — (F,H} + %—{. (9.5)

Special cases:

(1)
O = H, then (9.5) reads

dH _ 9H _
-

dt — ot (9.6)

if H does not explicitly depend on time ¢, i.e. for a closed system H is constant.
(ii)
Canonical equations

For O = q; we get:

since

(9.8)

For O = p; we obtain:

pi = {p;, H} = - &, (9.9)




due to

Opi __ ; Opi __
Bpj - 51’]’7 aqj =0. (9.10)

9.2 Properties of Poisson Brackets

The Poisson brackets defined in (9.4) are important not only in context with the time
evolution of an observable, they also allow to formulate classical mechanics in a form
where the connection with quantum mechanics can be clearly demonstrated. We
therefore give a series of important rules below which simplify the calculation of
Poisson brackets:

(i) antisymmetry
{u,0} = —{v,u} (9.11)
(ii)
linearity
{u, v+ w} = {u, U} + {u, w} (9.12)
(iii)
product rule
{u,vw} = v{u,w} + {u,v}w (9.13)
(iv)
Jacobi identity
{u, {v,w}} +{v,{w, u}} + {w,{u,v}} = 0.(9.14)

The proofs for (9.11)-(9.14) follow directly from the definition (9.4) and the
standard rules of differentiation.
Examples:

(1)

Canonical conjugate variable g;, p; are distinguished because

{gi,0;} =0, {pi,p;} =0,  {qi,p;} = di;. (9.15)

(2)

Angular momentum: The following holds for the components of the angular
momentum:




{L1,L>} = Ls; {Ls3, L1} = Ly; {Ls, L3} = Ly, (9.16)

as can be easily proven using (9.15). The quantum mechanical analogue of (9.16) is

the basis for the quantization of angular momentum!

(3.)

(4.)

Conserved quantities: If an observable G is not explicitly dependent on time ¢,
we have

¢ — {G,H} =0, (9.17)

and thus G= const,, if {G, H} = 0. The importance of Poisson brackets is, that
they provide an algebraic formulation for the dynamics of physical systems and
allow for a formal 'introduction’ to quantum mechanics, in which the conjugate
variables (q;, p;) are replaced by operators in an abstract Hilbert space (see

quantum mechanics).
The harmonic oscillator:

A completely algebraic solution is possible e.g. for the harmonic oscillator, i.e.
for the Hamilton function

H(q,p) = 357 + Fwpq™- (9.18)

With (9.7) we get g using (9.15):

2

. p m 1
i={¢,H} ={g,~— + —wid’} = —{a, 0"}
2m 2 2m
= 5 (p{g,p} + {g,p}p) = s (p+p) = & (9.19)
and p as:
. p? m o mw3 )
p={p,H} ={p, -— + wia’} = {p,q°}
2m = 2 2
mw? mw?
= < (¢{p, ¢} +{p,q}9) = = (—q—q) = —mwiq. (9.20)
Together:

qg= % = —w%q or q-+ wgq =0, (9.21)




i.e. an equation for a vibration with frequency wy.

9.3 Canonical Transformations

We now want to investigate the conditions, that the Lagrange equations and canonical
equations of motion do not change for transformations of the 2s coordinates of a
physical system, i.e. are form invariant.

9.3.1 Point Transformations

When formulating Lagrangian dynamics we have introduced generalized coordinates g;
such that constraints imposed by the system are met identically. However, the choice of
generalized coordinates q; for many-body systems is by no means clear and one can
choose different coordinate systems. The question then arises, if the dynamics are
invariant under point transformations

g — Qi(qist), l=1,..,s. (9.22)

As an example for such a point transformation we mention again the transformation of
cartesian coordinates to spherical coordinates:

T r(z,y, 2)
y| = | ¥z,y,2) |- (9.23)
z o(z,y,2)

On the other hand, we are interested in an ‘optimal’ set of coordinates () ; in which all

cyclic variables of the system occur explicitly.
We now show that the Lagrange equations are indeed form-invariant with respect
to point transformations (9.22), i.e.

L(qi)(ii;t) — L/(Qia Qi;t) = L(Qi(Qjat)a Q2(Q]a Qjat);t) (9-24)

in the sense:

d 0L 9L _ d or oL _

dt 8g; dqi dt Q) — e, — Y (9.25)

For the proof we calculate
oL s 8L 0Og; s 8L
Q; — Di-1 dg; 0Q; — Di1 @ij5g; (9.26)

with the s X s transformation matrix
(9.27)



. _ 9qgi
aij = g

In anlogy we obtain for the momenta P; with (9.27):

_ oL _ s 0L 04 _ s 094 s C0q s .
Py = 0Q; 21 94 oQ; i1 Pi 00; iz Pi 9Q; > ic1Gij Pi,  (9.28)

i.e. with (9.26)
d d oL’ oL
b= i1 i P = 35, = 2lic1 Gijhg - (9.29)

The form invariance now follows from the fact, that the Lagrange equations in the
coordinates g; and @) ; emerge from each other by multiplying with an invertible s x s
matrix (a);; whose determinant is # 0.

For the Hamilton function H'(Q;, P;;t) we get

H(qi,piit) — H'(Qs, Pist) = 3, QiPi — L'(Qi, Qist) (9.30)

and according to the variational principle (7.85) the equations of motion

Qi = 55 Pi=-9% (9.31)

Obviously the form of the equations of motion (9.31) is invariant with respect to a
point transformation of the form (9.23).

9.3.2 Examples

Free particle in a plane
We restrict ourselves to the transformation in the (x, y) plane for a free particle of mass
m,ie z2=0:

z T COS
gi=|y| > Qi=|rsiny|. (9.32)
z z

The Lagrange function L then reads
L= %(2*+9°) = L'(&(r, 0,27, ¢,2),9(r, ¢, 2,7, §, 2);t) (9.33)

and we obtain with
(9.34)



x':le%(rcosgo):i'cosgo—rgbsingo,

J=Qs= 2 (rsiny) =7sin ¢+ r¢ cos ¢ (9.35)
the Lagrangian function
L' =5+ 7% = L'(Qi, Qiit). (9:36)

The momenta P; = 6L’/8Q,- result in

P, = %’;{ = mpr, P, = 9L — mp2yp, (9.37)

The Hamilton function H' follows from (9.30)

P2 P2

H' =+P, + ¢P, — L'(t,r,9) = Tl i o (9.38)
The equations of motion according to (9.31) are:
. _OH _ P, ._08H _ P p _ o _ P p _ _ oH _
r=an T ms P T op, — s = = o Bo=—5%, =0, (939)

i.e. the variable ¢ is cyclic.

Free particle in a rotating reference system
A particle of mass m continues to move in a system, which additionally rotates around
the z axis with the angular velocity w. We introduce the following new coordinates as:

r—R=mr =P =¢p+uwt, (9.40)

where the new coordinate ® now explicitly depends on time t. The Lagrangian function
L"(R, R, ®, ®;t) then reads with

R=r d=¢p+w (9.41)
das:
L"(R, R, ®,&;t) = 2 (R* + R2( — w) ). (9.42)
With the momenta
o a " - o - a " . L)
P = % — mR, Py = 8—; = mR*(® — w) (9.43)

the new Hamilton function H” results in



H" = RPg + $Pg — L"(R, R, &) = 45 4 52 1 Py, (9.44)

Note: With (9.44) it becomes clear from the additional term wPg that from
L'(Qi, Qit) = L(g:(Qi3t), di(Qi, Qist)it) (9.45)

in general it does not follow that the Hamilton function H’ can be calculated from H
by inserting q¢(Q;, P;;t), p(Qi, P;;t), i.e. for explicitly time-dependent transformations

H'(Q;, Pit) # H(qi(Qs, Pist), pi(Qi, Pist)st). (9.46)

The equations of motion for the free particle in the rotating reference system with the
Hamilton function (9.44) read:

S _ OH" _ Pr. & _ OH" __ Ps .

R = 55 = m’(I)_(?Rp = Rz T W

. - o (9.47)
Pr = —%% :mR?”P‘I’ 2s = 0,

which implies that the variable @ is cyclic in this case.

9.4 Extended Canonical Transformations

So far we have considered point transformations of the form (9.22), which are just
transformations of the coordinates g;. In the Hamilton function H(g;, p;;t), however,
the variables g; and p; are independent (equal right) variables, such that we have to
investigate general transformations of the form

q; Qi(Qj7pj;t))
(p;-) - (Pi(Qjapj;t) ' (5.48)

Example: The extended transformation

()= (%)= (7).

which exchanges coordinates and momenta, is canonical, since with H(q;, p;;t) the
Hamilton function H'(Q);, P;;t) is given by

H'(Qy, P;t) = H(P;, —Qj;t). (9.50)

The canonical equations of motion follow

aHI(Qj>Pj;t) _ 8H(P37_Q],t) _ 6H(qjapj;t) — 2. — Q",
op, 0P = o  Piz=Wi

(9.51)



L A el (5:32)

thus the form invariance of the canonical equations of motion is shown with respect to
the transformation (9.49).

The example clarifies that generalized coordinates and generalized momenta are
‘exchangeable’ and therefore have equal rights. Both degrees of freedom become
‘abstract’ coordinates in the Hamilton function, which can be represented by 2s
independent degrees of freedom in the 2s-dimensional phase space.

General transformations (9.48) are described by a transformation T'(g;, p;;t),

which should be arbitrary but invertible, i.e. the inverse transformation 71 (P;, Qist)

gives
— . (9.53)
P; pi(Qj, Pjt)
The problem with general invertible transformations T, however, is that the Lagrange
equations are no longer ‘from invariant’. Hamilton’s equations then also are no longer
‘form invariant’, i.e. have the form (9.31). We therefore must look for ‘restrictions’ on
the transformation 7, which generally ensure ‘form invariance’.

First we define suitable transformations as follows: we denote a transformation T
canonical in the lower sense, if for all Hamilton functions H(g;, p;;t) a function
H'(Q;, P;;t) in the new variables P;, Q; exists such that the equations of motion are
‘form invariant’.

To provide suitable conditions for such transformations, let’s go back to the
variation principle (7.85), where the variations

05 = 5fttl2 (25:1 qipi — H(qi,pi;t)) dt =0

. 9.54
= 5fttl2 (Zf_l QiP; — H'(Q:, Pi;t)) dt 554

vanish for arbitrary interval boundaries ¢, t2. We recall that the variational
problem (9.54) leads directly to Hamilton’s (canonical) equations of motion. The
connection becomes immediately apparent, when we consider in addition to the actual
trajectory (gi(t), pi(t)) any neighboring trajectory (gi(t) + eni(t), pi(t) + eri(t)),
where the functions 7; and k; must be linear independent since the g;, p; are also
linear independent. The derivative of the action S(€) with respect to € leads (in the
limit e — 0) to:

ds g (S .
d_ = d_ Z[qz + 6771] [pz + Gﬁli] — H(qz + €Ni, Pi + €I€Z’;t) dt
¢ t @€ \'i=1



= (S s + i — o — P) . (955)
After partial integration of the term with 7); and consideration of the boundary
conditions (7;(t1) = n;(t2) = 0) on the integration limits we get

ds b (Z _ , 0H 0H
e Al (Z[mpz] + qiki — 6—q7li - 3_191’%) dt

-1 4

= t? Ef:1 [(—Pz’ - g—g)m + (qi - g—g)ni} dt = 0. (9.56)

Since the functions n;, k; are arbitrary and linearly independent, the coefficients in the
brackets (..) themselves must disappear, which just leads to the canonical equations of
motion (9.31) in the variables (q;, p;)-

We now come back to Equation (9.54). Since the variation is vanishing at the
integration limits, the integrands differ-apart from an insignificant constant c—only by
a total time differential of any continuous differentiable function F in the variables

4i, i, Qi, Pist;
(>, dipi — H(qi, pist)) =

) 9.57
C(Zi QiP; — H'(Qi,Pi;t)) + L F(q;,pi, Qi, Piit), (9-57)

since the end points are kept during the variation, i.e.
5 i dt = 8(F(t1) — F(tz)) = 0. (9.58)

After these preparatory remarks, we now define a transformation as canonical, if the
constant c=1, i.e. if for any Hamilton function H(g;, p;;t) a Hamilton function

H'(P;, Q;;t) exists with the property:

Yo (qz'pi — PzQz) — H(gi,pist) + H'(Qs, Piit) = L F(gi, pi, Qi, Pist). (9.59)

9.4.1 Generators of Canonical Transformations

The function introduced in (9.59) F'(g;, pi, @i, Pi;t) is an arbitrary (continuously
differentiable) function of 4s + 1 variables, where only 2s + 1 are linear independent,
since the number of degrees of freedom of the system is s and for each degree of
freedom we need 2 independent variables; the time t is an additional parameter. Thus
there are—except for linear combinations—only 6 different classes of generating
functions with 2s 4 1 independent variables each:



Fi(qi, Qiit), Fa(qi, Pist), F3(pi,Qiit), (9.60)
Fy(pi, Pist), F5(qi, pist), Fe(Qi, Pist).

Only F5 is a function of the variables (g;, p;) alone such that (9.59) can be written in
the form

(Z qipi — H(thu ) (Z PQZ - QuPz,t)) = %Fg,(qi,pi;t)
=1

=i (dz & + By 8F"’) + 9%, (9.61)

The time derivative in the coordinate (); we can rewrite using the functional
dependence on the (g;, p;;t),

B 0Qi » | Qi . 0Qs
- ZZ:I( Agr, qr + 5pk ) + ot (9.62)

and obtain from (9.61)

Z%pz Zpk (Zlan g; + 9k, ] + %) — H(gi, psit) + H'(Qi, Pit)

Di
0q; Opi

. . 0 0
=3, <qz 9+ pi F5)+ oy (9.63)

Since the g;, p; are linearly independent, the quantities ¢;, p; must also be linearly
independent and thus the coefficients of the terms ~ ¢; and ~ p; vanish identically. By
comparing the coefficients we get:

0
pi— i P 32 =05, (9.64)
s 0 OF:
— i P G =85, (9.65)
H =H+Y; P2 4 9 (9.66)

The Egs. (9.64) and (9.65) represent a system of coupled equations (of dimension
2s), which can be solved for the P (q;, p;;t), Qr(g;, ps;t). The Hamilton function



H'(Qp, Pg;t) then follows from (9.66) by inserting the solutions
Py(qi, pist), Qr(qi, pist), where the partial time derivative of Fj still can be chosen
arbitrarily. The generating function F; thus generates an infinite number of
canonical transformations! Without explicit proof we note that this holds true also
for the generating function F5(Q;, P;;t), since it is also a function of the conjugate
variables );, P;. The solution of the coupled system of equations (9.64) and (9.65),
however, is quite complex since all equations include the functions P;, and )}, in a
nontrivial way.

Therefore, we will examine in the following the functions FY, . ., F; and start with
Fi(q;, Q;;t). A transformation is called canonical if

S - S . dFl
> i — ) PiQi — Hlgpit) + H'(Qi, Pit) = — =
1=1 i=1
=i (qaa—fl +Q; ggt.) + 8. (9.67)

Due to the linear independence of q; and Ql we obtain by a comparison of the
coefficients

pi = 209 (9.68)
0F1(q:,Qi;

p; = - 202l (9.69)

H' = H + 20698 (9.70)

If the coordinates gq;, Q; are linearly independent, the transformation to the
coordinates p;, P; is canonical, if a function F(q;, Q;;t) exists with the properties
(9.68), (9.69) and (9.70).

As an example we calculate the transformation equations from the generating
function

Fi(g,Q) =-2. (9.71)

According to (9.68) we get
(9.72)




and with (9.69)

50— =1 = Plg,p). (9.73)
With (9.72) this then results in

Q =pq®> = Q(q,p), (9.74)

i.e. the problem of the transformation equations from the variables (g, p) to the new
variables (Q, P) is solved.
On the other hand, when knowing a transformation, e.g.

q Q(g, p)) <ln p)
— = ) 9.75
(p) (P(q, p) —qp (5:75)
we can calculate the generating function Fi (g, Q). Equation (9.75) immediately gives

p =exp (Q)- (9.76)

We start with (9.68) and integrate over dq, which gives F} in the form

Fi(q,Q;t) = [p(q,Q) dg+ g(Qit) = g exp (Q) + 9(Q;t) (9.77)

with any continuously differentiable function g(Q; t). With (9.69) we get
OF’ 09(Q;t
P=-98 = —gexp Q)+ 2ZY = —gp(4,Q), (9.78)

from which follows immediately:

22D — . (9.79)
Thus the generating function F; = q exp (Q) is determined (except for an insignificant
constant).

The general procedure for calculating the transformations @ ;(g;, pi;t) and

Pj(qi, p;;t) is as follows: for a given Fi(q;, Q;;t) one first calculates the s equations of
motion for the p; by differentiating the generators F; with respect to the g; and solves
the equations for the @ ;(g;, pi;t). Then one calculates the derivatives of F'; formally
with respect to the @) ; and inserts the calculated Qj(qi,pi;t) into the expression
obtained for the P}, from which the transformations P;(g;, p;;t) finally result.

The generating function Fs(g;, P;;t)

We'll start with a function Fg(qi, P;;t), which has the same linear independent
variables as the function F5(q;, P;;t) (to be defined later). A transformation (9.48) then
is canonical if:



aFy

S S
Z(L’Pi — ZPin‘ — H(g;,pist) + H'(Qi, Pist) = 7t
i1 i—

~(.0F, . OF OF,
— 2 p2i2 ) g2
2 (q g 0P ) "

> i [Qipi - PiZi—l(an dk+ 3 BQZ P ) — P aé%]
—H(q;,pi;t) + H(Qi, P;;t)

(9.80)

using the functional dependence Q;(gx, Pk;t). Due to the linear independence of ¢; and
P; we get (by a comparison of the coefficients)

0F,(q;,P;; ~
Zk 1 Pk 3Qk + 2((‘91(112 i) — % [FQ + 22:1 Pka] , (9.81)

8~ ')Pj; n S
0= Zk 1Pk 5Qk Fz(aqual t) = % |:F2 + Zkzl Pka] — Qi, (982)

H = H4 Y P29 PRt g [152 +Y Pka}, (9.83)

where we also have used the linear independence of the variables (g;, P}), i.e.
3Pk/8qi=0

The Egs. (9.81), (9.82), (9.83) suggest to define a generating function Fy(g;, P;;t)
via

Fy(gi Pist) = Fa(qi, Pist) + Xho1 PrQr. (9.:84)
We then can write the Egs. (9.81), (9.82), (9.83) in compact form:
pi = 2200 (9.85)
Q: = Luht), (9.86)
H' = H 4 22450 (9.87)




Example: We calculate the generating function F5 for the transformation

») (%)

= . 9.88
(P —qp (5:88)
With p = —P/q we get by integration (9.85):

Fy(q,P) = [p(P,q)dq+ g(P) = —P In q + g(P) (9.89)

with any continuous differentiable function g(P). We now use (9.86) to get g(P) via
(9.89):

Q=lnp= g = T = —Ing+ 25 (9.90)

Integration of dg(P)/OP over Pyields (with In (p)+ In (¢) =In (pq))
g(P) = [In (pq)dP = [In (—P)dP = PIn (-P) — P. (9.91)
Thus the generating function F»(q, P) reads
Fy(q,P)= —Plng+ Pln(—P)— P = P(ln (—P/q) — 1)). (9.92)
Relationship between the generators F'; and F»

From the defining equations for canonical transformations (9.67) and (9.80) we
have immediately:

a4 (F1 . Fz) —0 or Fy = Fy + const., (9.93)

where the constant can be assumed to be 0 without any restrictions. With (9.84) we
then get using (9.69):

Fy(qi, Piit) = Fo(qi, Piit) + X4 PrQx
Fi(gi, Pist) + > h (_ 35; )Qk

= Fi(gi, Piit) — Yy go- Q- (9.94)

It thus turns out that the generating function F5 is the Legendre transform of F;.

9.4.2 Overview of the Generating Functions



In analogy to the previous considerations one finds that the generating functions Fj
and F; are also Legendre transforms of F:

F3(pi, Qiit) = F1(qi, Qist) — > pq gf;j qk; (9.95)

while Fy(p;, P;;t) results from a double Legendre transformation:

Fy(pi, Piit) = F1(gi, Qist) — >3y ( Saan + aFl Qk)

Oqx

(9.96)
= F1(qi, Qist) + > 11 (PrQr — Prai)-

The connections, that follow from the requirements (9.59) by a comparison of the
coefficient, are given in Table 9.1 for the generators F, . ., Fy:

Table 9.1 Overview of the generating functions Fy, Fy, F3 and Fy
and the definition of their variables

Overview

Fi(q,Q;t) |p= +0F1/8q|P = —0F1/0Q |H' = H + 0F, /0t
Fs(q,P;t) |p=+0F3/0q|Q = +0F2/0P |H' = H + 0F>/0t
Fs5(p,Q;t) |q=—0F3/0p|P = —0F3/0Q |H' = H+ 0F3/0t
Fy(p, Pit) |q=—0F4/0p|Q = +0F4/0P |H' = H + 0F4/0t

Remark 1: From Table 9.1 it follows immediately that for time-independent
transformations the Hamilton function itself is a canonical invariant, i.e. H' = H.

Remark 2: All point transformations g¢; — Q;(gj;t) are canonical since there is a
generating function

Fy(gs, Pist) = Y71 Qi(g;it) P (9.97)
with

pi= 95 =5 | S (gzt) Py (9.98)
and

Qi = G =Sty F(g5t) Q. (9.99)




As an example we consider the harmonic oscillator again,
2
H(q,p) = 3 + Fwpda’, (9:100)
and examine the canonical transformation generated by the function
Fi(q,Q) = Fwoq® cot (Q). (9-101)

According to Table 9.1 we get:

OF : OF 2 9 2Psin®(Q
p= O —mungeot Q) P= U =t or g I

(9.102)

By simple transformations we obtain:

P = mwoq Zﬁ?((g)) = mwg%((g; WZMIZ sin (Q) = v/2Pmuwy cos (Q) = p(P, Q).(9.103)

q= S = VEZPmawq cos (Q) sy = 4/ 1 sin (Q) = (P, Q). (9:104)

The Hamilton function H'(Q, P) in the new coordinates is given by:

2

H'(Q,P) = H(q(P,Q),p(Q, P)) = 2p—m + %w%(ﬂ =

= 2Pmuncos’ (@) Bwi 2L sin® (Q) = Pwy cos? (Q) + Pwo sin® (Q) = Pwy,(9.105)

2m

and the equations of motion in the coordinates P, Q are:

These equations of motion show immediately that P = H'/wy = P, is a constant of
motion, which is proportional to the energy E = H'. On the other hand, the solution
for the angle variable follows immediately from the second equation,

Q(t) = wot + a, (9.107)

where o denotes an arbitrary phase that has to specified by initial conditions. The
solution is complete, when inserting the results for P and Q(t) into the transformation
formulae (9.103) and (9.104):

q(t) = \/;PO sin (wot + @), (9.108)



p(t) = vV2Pymwq cos (wot + a). (9.109)

The induced transformation by the generating function F; (9.101) thus allows for a
simple solution of the oscillator problem.

9.4.3 Canonical Invariants

We denote quantities, which do not change with respect to canonical transformations,
by canonical invariants. So far we have pointed out the invariance of the Hamilton
function H as an example for time-independent canonical transformations, and the
form invariance of Hamilton’s equations of motion. We now will show that the
formulation of the dynamics can be formulated canonically invariant with the help of
the Poisson brackets (9.4) for time-independent transformations. We start with the.

Invariance of fundamental Poisson brackets
Let (gi, pi) and (Q;, P;) be two canonically conjugated sets of variables, for which both

the Hamiltonian equations of motion hold with

Then the following Poisson brackets are canonical invariants:

{Qi,Q;},, =0 {P;, Pj},, = 0{Q;, P;}, , = by (9.111)

To prove (9.111) we calculate the time derivative of ),

N[99 8Qi.>_ S(BQiOH 8Qic’9H>_
Ql_z(a% ot Opi Pk _Z Oqr Opr  Opr Oqr )

k=1 k=1

2 ((9@1-[3[{’ 5Ql+3H’ 0Pl__8Q,~[3H' 3Ql+8H’ 8Pl:|>

G\ Oqx [ 0Q: Opr. ~ OP, Opr| Opr [ 0Qu Oqr. ~ OP; Ogy

> (35'[3@ 0Q; 0Q; 8Ql_+8ﬂll8Qi oP,  0Q; 8Pl])
0Q; | Oqr Op,  Op, Oqr | OP, | Oq, Opr  Opy Ogy

k=1

= i (-2{Qn @iy, + Q@0 PY,,) = @ (9.112)
Consequently we must have:

(9.113)
{Qi,Qi},,=0; {Qi, P}, , = da



The still missing proof for { P;, Pl}p,q = 0 follows in analogy from the calculation of P;.

General Poisson brackets

We now want to show that the value of a Poisson bracket is independent of the set of
canonical variables that are used as a basis. To this aim we consider any two phase-
space functions F and G and two sets of canonical variables (g;, p;) and (Q;. P;)

G -Gam)  G)-Gam) e

The Poisson bracket of F and G in the variables g, p then gives:

([ OF 0G OF 0G
{F’G}p,q:Z( - ):
=1

c’iqj Bpj 6]7]' 8qj

i( l@G 8Ql+8G GPZ]_aF{aG 3Ql+8G (9Pl])_
0q; | 0Q; Op; OP; Op; 0Q; 0Oqg; 0P, Og;

Jil=1

= S (2P Qb + $51F, Y, ). (9.115)

Two intermediate results following immediately from (9.115) are:
(i) For F' = Q; we get using the fundamental Poisson brackets:

{G,Q1},, = — 45 (9.116)

(ii) For F' = P, the result is:

{G,Pi},, = 35 (9.117)

Inserting (9.116) and (9.117) into (9.115) we obtain the invariance of the Poisson
bracket with respect to canonical transformations, since F and G have been chosen
arbitrarily:

{F,G},, = P 1(3@, [ 35,} + BPZ [%D ={F,G}p - (9.118)




Accordingly we can omit the indices at the Poisson brackets, which have been
introduced to specify the basic variables.

9.4.4 Criteria for Canonical Transformations

In practice the question often arises, if a specific transformation is canonical or not.
This question often is not easy to answer if the associated explicit generating function
is not known. For practical purposes, on the other hand, the following theorem is of
reat help:

An extended transformation (9.48) is canonical, if and only if the fundamental
Poisson brackets are fulfilled in the new variables, i.e.

We provide the proof for non-explicitly time-dependent transformations, i.e. for
vanishing explicit time derivative of the generators F}, /0t = 0, such that again:

H(qi,p;) = H'(Qj, Pj) = H(¢:(Qj, P;),pi(Qj, Pj)). (9.120)

Since according to Sect. 9.4.3 the Poisson brackets are invariant with respect to
canonical transformations we choose, for the sake of simplicity, the variables g;, p;. The
time derivative of ) ; and P; then reads:

o o 0Q; dH 0Q; oH

Q5 ={QsH},, =i, (52 - Son), (9.121)
5 o s OP; OH OP; OH

Py = (P, H},, = Ti (52 3 - 5292, (9.122)

The partial derivatives of the Hamilton function can be rewritten as follows:

0H __ s OH' 0Q dH' 0P
o T Zk—l(&Qk 8plk + a5, Wf)- (9.123)
O0H __ s 8H' 0Q OH' OP,
dq Zk—l(an aqlk + oP, a—qf) (9.124)
We insert (9.123) and (9.124) into Eq. (9.121),
Qj :{QjaH}q’p
— $ 9Q; ( 9H' 0Qk OH' 8P, \ _ 9Q; ( 9H' 0Qy oH' 0P (9.125)
o Zl’kzl aql an 8pl aPk 8]71 8])1 8Qk 3‘11 aPk 8ql )

and summarize as:



i a ! 8 !
Q] = {QJ7 H}q,p = ZZZl (T&{Q37 Qk}q’p + ng{Q']’ Pk}q,p) ° (9126)
In the same way we find with (9.122):

P; = {Pj, H}, = D k1 <_gTH,:{Qk’ Pj}op+ g_g;{Pj’ Pk}q,p)’ (3.127)

Hamilton’s equations of motion
. oH' : oH'
Q;= ap; 1 Pj = —%5q; (9.128)

thus hold, if and only if the fundamental Poisson brackets (9.119) are fulfilled in the
new variables (q.e.d.).

The formulation of Newtonian dynamics in form of Poisson brackets, which are
invariant with respect to canonical transformations and introduce conjugate
variables by the fundamental Poisson brackets (9.119), allows for a simple transition
to quantum mechanics.

9.5 Liouville’s Theorem

Liouville’s theorem provides an elegant introduction to statistical mechanics. In
order to specify the state of a system of particles as a point in phase space exactly, one
has to define (or measure) initial conditions for solving the canonical equations; for
systems with a lot of particles (N ~ 10%3) this is practically impossible. Then a less
precise (but for many questions still sufficient) description is to specify the
probability p(g;, p;;t) for a system to be at point (g;, p;) at time ¢t in phase space.
Knowing the probability p(g;, p;;t) one can calculate the expectation value of an

observable G as an average:
< G >= [p(qi,piit) G(gi,pist) 1; dgidp; (9.129)
with the normalization
S p(ai, pist) 11, daidp; = 1. (9.130)

If the mean-square deviations AG? =< G? > — < G >? are sufficiently small (which
is the case for large numbers of particles) one can identify the average (9.129) with the
macroscopic measurement.

The concept of the ensemble serves as an illustration of p in statistical mechanics:
One replaces the actual system, whose initial conditions are imprecise (or incompletely
known), by a sequence of many similar systems (ensembles) with different, but
precisely specified initial conditions each, in accordance with the macroscopic
knowledge about the actual system. Each member of the ensemble is represented by a



point in phase space and the ensemble by a 'swarm’ of points in phase space; their
distribution is determined by the probability p(g;, p;;t).

Following this idea we obtain the Liouville equation for the distribution function p
, which reads:

G — {p,HY + % =0. (9.131)

To explain (9.131) we use the canonical equations and get

{o,HY =2, ( “Gi + 5 pz) (9.132)
according to the definition (9.4). Since now
P (a‘h ap’) P (aqlapl - 52,252) =0, (9.133)
we get
{pH} =2 ( -(pdi) + a%i(pzii)), (9.134)
thus
Zi(a%(pqz') + a%(ppi)) +2 =9 (9.135)

due to (9.131).

Equation (9.135) can now be written as a continuity equation in phase space,

d .
% 4 div(pv) =0 (9.136)
with
— (4
v=| . 9.137
(Pi) ( )
as velocity in phase space and
S 0 0
div = (2, % )- (9.138)

The Liouville Theorem—expressed in (9.131), (9.135) or (9.136)—then can be
interpreted as the conservation of the number of the (ensemble representing) points in
phase space (in analogy to the conservation of charge in electrodynamics): according




to (9.136) the number of points in a certain area Vpy, of the phase space can only
change if points of the ‘swarm’ move in or out.

Of particular interest for equilibrium thermodynamics is the case of a stationary
distribution,

op

- = 0, (9.139)
for which holds
{p,H} = 0. (9.140)
Important solutions of (9.140) are:
p=0(H—E), (9.141)

which is denoted by the microcanonical ensemble, where the total energy of the
system is precisely known. If only the average (9.129) of the energy < H > is known
due to an interaction with a heat bath, p becomes

p =exp (—H/(kgT)), (9.142)

which is denoted by the canonical ensemble. In (9.142) then T can be identified with
the phenomenological temperature of the system while kp is the Boltzmann constant.
Furthermore, if the particle number N is a constant of motion,

{N,H} =0, (9.143)
and only known on average < N >, p becomes
p =exp (—% —aN), (9.144)

where the Lagrange parameter « is related to the chemical potential and the
temperature (see thermodynamics). Such an ensemble is called grand-canonical.

In addition to the microcanonical, canonical and grand-canonical ensembles the
statistical physics also includes further ensembles, each of which is characterized by
whether a thermodynamic observable is preserved exactly or only on average. These
distinctions play no role for very large particle numbers in classical statistics but are of
great importance for quantum statistics, where the thermodynamic potentials—
similar to the generating functions F1, .., Fy—emerge from each other by Legendre
transformations (see thermodynamics).

In summarizing this chapter we have formulated the dynamics in phase-space
variables, i.e. in generalized coordinates and generalized momenta. In this case the
time evolution of an observable, that not explicitly depends on time, is given by
Poisson brackets, which are determined by the derivative of the observable and the
Hamiltonian with respect to the phase-space variables. The elementary Poisson
bracket between generalized coordinates and generalized momenta was shown to be



unity for associated pairs and their time evolution to be given by the Poisson bracket
with the Hamilton function, i.e. the canonical equations of motion. The Poisson
brackets thus allow for an algebraic formulation of the dynamics. Furthermore, we
have proven that point transformations and extended canonical transformations
between the generalized coordinates and momenta keep the equations of motion
canonical invariant. Furthermore, the elementary Poisson brackets were proven to
be invariant with respect to canonical transformations such that a formulation of
classical mechanics could be achieved, that is independent on the choice of the
generalized coordinates. This will pave the way to quantum mechanics, where the
Poisson brackets will be replaced by commutators of operators in an abstract Hilbert
space. The algebraic formulation also leads to a rigid formulation of statistical
mechanics, where the physical system - in equilibrium - is described by ensembles with
properties that are defined by expectation values of conserved quantities.



Appendix

Appendix

In these appendices some useful extensions are presented: The Lagrange and Hamilton
functions for relativistic systems are given as well as for continuum mechanics. We will
close by providing numerical algorithms for differentiation and integration as well as for
the numerical solution of a set of differential equations.

A.1 Relativistic Mechanics

Using the example of the relativistic treatment of a charged particle in an electromagnetic
field we want to show how the Lagrange and Hamilton formalism can be transferred and
related to other areas of physics.

A.1.1 Lagrange Function for a Relativistic Particle
We are looking for a Lagrange function that leads to the equation of motion

i (m(w)) = F (A1)

with
m(v) = y(v)mo = = (a2)

and
F=qB+@x B)) (A3)

for the case of the Lorentz force. The fundamental relationships of Lagrangian mechanics,
Pi = 4=, (A4)
for the generalized momenta (A.4) as well as the Lagrange equations remain,

d oL oL
m(r) =& (A.5)

Since in comparison to the non-relativistic case only (A.2) changes, it thus makes sense to
start with:

. —
L=T—-q¢®+quv-A4, (A.6)




where T must be constructed in such a way that

g—g: = m(v)v;. (A.7)
The solution is (up to a constant of integration)
~ 2
T = —moc?y/1 —v2/c? = ——T:(‘f) , (A.8)
obviously different from the kinetic energy
__ myc? 2 _ 2
T = ﬁ — moc® = moc*(y(v) — 1). (A.9)
By inserting (A.8), (A.6) into (A.5) we get-as desired-Egs. (A.1)-(A.3).
A.1.2 Hamilton Function for a Relativistic Particle
The Hamilton function turns out to be identical to the energy:
3 3
H =Y vipi + moc®y/1—v2/c2 +q® —q> v;A; =
i=1 i=1
§ 2 _ 2 _
%—l—moc V1—v%2/c2+q® =T+ qP + moc* = E, (A.10)
with
pi = 9= = m(v)v; + qA;. (A.11)

A.2 Continuum Mechanics
A.2.1 Lagrange Function for an Oscillating String

We assume a (long) linear chain of mass points (see Fig. A.1); their Lagrange function in

case of harmonic forces (limited to next neighbor interactions ) is:

L=2%25d-%> (g1 — a:)%.

(A.12)

The generalized coordinates g; are the deflections of the particles from the equilibrium

position, ¢; are the associated generalized velocities (Fig. A.1).
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Fig. A.1 Illustration of an oscillating string for mass points at equal distances
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Fig. A.2 Illustration of an oscillating string in the continuum limit

The well-known equations of motion resulting from (A.12) are coupled harmonic
oscillators:

mg; — k(qir1 — qi) + k(gi — qi-1) = 0. (A13)

For the transition to the continuum (see Fig. A.2) let us reformulate (A.13) with
u = m/aand Kk = ka as:

2
LZE(%Q?—H%)aZ S, aL; (A.14)

and replace (in the limita — 0)

. . o 0
iz Y. [deoo g — P(st); ¢ — a—i’; (g1 — @) — 8—;6. (A.15)

Then

L=+ f(u(%—ff — /ﬁ(g—ff)da: = [ & dz. (A.16)

Allowing that in general
(A.17)



Z = 3(% %_;ﬂ, g_qi;t)a

the (generalized) Hamilton’s variational principle,

f(f 2, %—:f}, %;t) da:) dt = extremum, (A.18)

leads to the associated Euler equations:

0 0Z 0 0Z _ 0
W(@(Z—T)) +%(6(%)> T (A.19)
in analogy to
d (oL 9L
() =& (A.20)

Especially in the case above (A.16) from (A.19) one gets the known vibration equation

2
(%) -5 =0 (a21)

A.2.2 Hamilton Function for an Oscillating String
Instead of the generalized momentum in the discrete case,

Pi = 5 (A22)

we have accordingly:

0
m(z,t) = B2 (A.23)

ot

and can use the Lagrange density .# to define the Hamilton density by a Legendre
transformation

0
h=n% _ 2. (A.24)

The Hamilton function is then the spatial integral of h:




H=[hde=[(r% - %) da (A.25)

in analogy to the discrete case

Extensions:
(1.) The generalization to 3 spatial dimensions is simple:

T — x fdz. .o fd:cld:czdzg ..... (A.27)
and (I =1,2,3)
Wz, t) = Pl t); X g—jﬁ- (A.28)
(2.) In the case of electrodynamics not only a single field function occurs ¢(7§ t), but 4

independent field functions forming a four-vector:

. —
(Au(F}1) = (£2(r1), AR 1)). (4.29)
The general equations for the four-field Au(?z t) with (u = 0,1, 2, 3) are the subject of

electrodynamics.

A.3 Numerical Methods

Finally, we present the most important numerical algorithms for solving problems in
mechanics.

A.3.1 Differentiation

Let a function f,, = f(z,,) be defined on a grid with the same distance h, i.e.
frn=f(zn);xn =nh; (n=0,+1,42,...). (A.30)

To calculate the derivative of the function f(x,) at the position = 0 we expand fin the
neighborhood of x in a Taylor series

fl@)=fo+af +Zf"+ T "4 (A31)

where all derivatives have to be calculated at the point = 0. This gives the function fat
the grid points . via

fe1=fot hf' + B "+ B 4 O(hY). (A.32)

By O(h*) terms of order h* or higher powers of h are summarized. Furthermore:



fiz _ fO :t2hf,—|— 4Th2f//j: STh‘”’fm_i_O(hél). (A.33)

After subtracting f_; from f; in (A.32) and rearranging the terms:

— 2
Fl = f12’{—1 _ %fl/l+0(h4)’ (A.34)
where the term ~ f"’ vanishes for sufficiently small h. The difference formula
fr="00 (A35)
is exact if the function f- in the interval [—h, h|—is a polynomial of second order because
higher derivatives vanish.

By suitable combinations of (A.32), (A.33) difference formulae for higher derivatives
can be specified. For example, one finds directly that

fi —2fo+ f1=h*f"+ O(Rh). (A:36)
Then the second derivative of fat place z = 0 with a precision of order h? is
Lottt o po, (A37)

For the 3rd derivative of fin = 0 one obtains

2 2
f2— fh;h{ [l P 1. (A.38)

Note: For calculating the derivative of f at position x,, one moves the arguments in the
discrete formulae around n.

A.3.2 Integration
For the integration of a function f{x) in the interval [a, b] one divides the integral as:
b +2h +4h +6h b
[, f(z)dz = [ z+ [ o f(@)dz + [ f@)dot. ...+ [, fz)dw.(A39)

The underlying idea is now to replace the function fwithin the integration interval
[—h, h] by an approximate function (with the same values at the grid points), which can

easily be integrated exactly. The simplest function is a linear approximation, which yields
the trapezoid formula

f—hh f(x)dz = 2 (f-1+2f0 + f1) + O(R®). (A.40)

More precise integration formulae can be found again by using the Taylor expansions
(A.32), (A.33):

f(@) = fo+ L5t e + 2 e 1+ O(a). (A41)




This expression can be integrated elementary and we obtain the Simpson rule,

U f@)de = 2 (fy + 4fo + f1) + O(h®), (A42)

which is more accurate than (A.40) by 2 orders in h. With (A.42) the integral (A.39) is
approximated by:

[} f(z)dz = 2[f(a) + 4f(a + h) + 2f(a + 2) + 4f(a + 3h)

+2f(a+4h) +4f(a+ 5h)+...+4f(b— h) + f()]. (A.43)
Taking into account higher order terms in the Taylor expansion yields the Bode formula

[t f(@)de = F2(7fo + 32f1 + 12f5 + 323 + Tf4) + O(h), (A44)

which is more precise by 2 orders in h than (A.42), but also clearly increases the
computing effort.

A.3.3 Ordinary Differential Equations

The most general form of an ordinary differential equation is a set of M = 2s coupled
first-order equations,

= = f(y,1), (145)

with an independent variable t and an M-dimensional vectory = (yi, ..., Yy), such as
the canonical equations of motion in Hamiltonian dynamics. The task is now to determe
the value of y(¢) if an initial value of y(¢) = yy is given.

One of the simplest algorithms is the Euler method, in which the equation (A.45) is
considered at the point ¢,, and the derivative on the left is replaced by the forward
difference approximation:

L2+ O(h) = f(yn, tn)- (A.46)
Then y,, .1 can be calculated by a recursion formula from y,,:

Yni1 = Yn + hf(¥n,tn) + O(h?). (A47)

This expression has a local error of order h? since the error of the forward difference
formula is O(h). The global error for N integration steps from¢ = 0 to¢ = 1 is then of
order NO(h?) ~ O(h). This mistake only decreases linearly with the step size h = At.

Another way to solve the differential equation with higher accuracy is to set up
recursion formulae in which y,,; is not only linked with y,, but also with
Yn-1,¥Yn-2,¥Yn_3,- - In order to derive such formulae explicitly, we integrate each single
step of the differential equation exactly and get:

(A.48)



tn
Yn+t1 =¥n + ft" o f(y7 t) dt.

One can now use the values of y at t,, and ¢,,_; to find a linear extrapolation of f for the
required integral:

f(Y7 t) ~ tﬂ}t{kl f(y’ tn) - tzt" f(Y7 tn—l) + O(h2)' (A.49)

Inserting (A.49) into (A.48) and performing the t-integral, one obtains the two-step
method of Adams-Bashforth:

Yn+1 =¥Yn + h(%fn - %fn—l) + O(h2) (A-SO)

Higher order methods can be achieved by using the f extrapolation with a higher order
polynomial. When approximated by a cubic polynomial this results in the four-step
process of Adams and Bashforth:

Yni1 =Yn + 25 (55fn — 59fn1 + 37fn2 — 9fn_3) + O(h?). (A51)

For these algorithms the knowledge of the initial value alone is not sufficient to start the
algorithms. That’s why it is necessary to calculate the values of y at the first support
points first, for example, by using the Runge-Kutta method.

The previous methods are explicit, since y,,, ; is calculated from the known values of
y». Implicit algorithms, in which an equation must be solved, pave another way to
achieve a higher accuracy. As an example let’s mention the

Runge-Kutta algorithm of second order, which is often used. To this aim we
approximate the function fin the integral of (A.48) by its Taylor expansion around the
middle point of the integration interval and get

Yn+1 =Yn + hf(}’n+1/27 tn+1/2) + O(h3) (A.52)

Since the error is of order O(h?) an approximation of f(¥ni1/2:tni1/2) is of order O(h?)

and good enough as provided by the simple Euler method (A.46). Defining now k as an
intermediate approximation for the double difference between y,1/2 and y, then we

can calculate y 1 from y,, by the following two-step procedure:
k=hf(yn,tn); Yni1=Yn+hF(yn+ 5t +2) + O(R®). (A.53)

The advantage of the Runge-Kutta method is that there are no special restrictions on the
function f such as easy differentiability or linearity in y. It also uses only the value of y at
a single preceding point as opposed to the multi-step process described above. Equation
(A.53), however, is required which implies that the value f at each integration step has to
be calculated twice.

Runge-Kutta algorithms of higher order can be derived relatively directly. For this
we use higher order integration formulae (see subchapter A.3.2) in order to replace the
integral (A.48) by a finite sum of fvalues. For example, the Simpson rule gives:



Yn+1 = Y¥Yn + % [f(yna tn) + 4f(yn+1/27 tn+1/2) + f(Yn—i-la tn+1)] + O(h5) (A.54)

The algorithm is completed by the fact that successive approximations are used for the y
’s (with a comparable accuracy) in the right side of (A.54). A third-order algorithm with

alocal error O(h*) then is:
ki = hf(Yna tn);
ko = hf(yn + %7tn+ %)a

k3 = hf(;Yn - kl + 2k2’tn + h’):

Ynt1 = ¥n + glk1 + 4Ky + k3] + O(h?). (A.55)
It is based on Simpson’s formula (A.42) and requires a threefold calculation of the

function f per integration step.
Runge-Kutta algorithm of fourth order: By experience we have learned that a

fourth-order algorithm, which needs 4 function f calculations per integration step, gives
the best balance between accuracy and numerical effort. The algorithm for 4 intermediate

variables k; is:

k1= hf(}’natn);
ky = hf(yn+ ot + %);
ks = hf(Yn"’ %7tn+ %)a

k4 — hf(yn + k37tn + h)a
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